Dynamic 1D Search and Processive Nucleosome Translocations by RSC and ISW2 Chromatin Remodelers

  1. Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
  2. Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
  3. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
  4. Howard Hughes Medical Institute, Baltimore, Maryland, USA
  5. Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a response from the authors (if available).

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Volker Dötsch
    Goethe University, Frankfurt am Main, Germany
  • Senior Editor
    Volker Dötsch
    Goethe University, Frankfurt am Main, Germany

Reviewer #1 (Public Review):

Single-molecule visualization of chromatin remodelers on long chromatin templates-a long sought-after goal-is still in its infancy. This work describes the behaviors of two remodelers RSC and ISW2, from SWI/SNF and ISWI families respectively, with well-conducted experiments and rigorous quantitative analysis, thus representing a significant advance in the field of chromatin biology and biophysics. Overall, the conclusions are supported by the data and the manuscript is clearly written. However, there are a few occasions where the strength of the conclusion suffers from low statistics. Some of the statements are too strong given the evidence presented.

Specific comments:

1. It is confusing what is the difference between the "non-diffusive" behavior of the remodeler upon nucleosome encounter and the nucleosome-translocating behavior in the presence of ATP. For example, in Figure 3F, readers can see a bit of nucleosome translocation in the first segment. Is the lower half-life of "non-diffusive" ISW2 with ATP on a nucleosome array because it is spending more time translocating nucleosomes? The solid and dashed green lines in Figure 3F and 3G are not explained. It is also not explained why Figure 3H and 3I are fit by double exponentials.
2. What is the fraction of 1D vs. 3D nucleosome encountered by the remodelers? This is an important parameter to compare between RSC and ISW2.
3. A major conclusion stated repeatedly in the manuscript is that nucleosome translocation by a remodeler is terminated by a downstream nucleosome. But this is based on a total of 4 events. The problem of dye photobleaching was mentioned, which is a bit surprising considering that the green excitation was already pulsed. The authors should try to get more events by lowering the laser power or toning down the conclusion that translocation termination is prominently due to blockage by a downstream nucleosome. Quantifying the translocation distances before termination, in addition to the durations (Figure 4G and 4H), would also be helpful.
4. The claim on nucleosome translocation directionality is also based on a small number of events, particularly for RSC. 6/9 is hardly over 50% if one considers the Poisson counting error (RSC was also found to switch directions.) If the authors would like to make a firm statement to support the "push-pull" model, they should obtain more events.
5. At 5 pN of tether tension, the outer wrap of nucleosomes is destabilized, which could impact nucleosome translocation dynamics. Additionally, a low buffer flow was kept on during data acquisition, which could bias remodeler diffusion behavior. The authors should rule out or at a minimum discuss these possibilities.

Reviewer #2 (Public Review):

Summary:
The authors use a dual optical trap instrument combined with 2-color fluorescence imaging to analyze the diffusion of RSC and ISW2 on DNA, both in the presence and absence of nucleosomes, as well as long-range nucleosome sliding by these remodelers. This allowed them to demonstrate that both enzymes can participate in 1D diffusion along DNA for rather long ranges, with ISW2 predominantly tracking the DNA strand, while RSC diffusion involves hopping. In an elegant two-color assay, the authors were able to analyze interactions of diffusing remodeler molecules, both of the same or different types, observing their collisions, co-diffusion, and bypassing. The authors demonstrate that nucleosomes act as barriers for remodeler diffusion, either repelling or sequestering them upon collision. In the presence of ATP, they observed surprisingly processive unidirectional nucleosome sliding with a strong bias in the direction opposite to where the remodeler approached the nucleosome from for ISW2. These results have fundamentally important implications for the mechanism of nucleosome positioning at promoters in vivo, will be of great interest to the scientific community, and will undoubtedly spark exciting future research.

Strengths:
The mechanism of target search for chromatin-interacting protein machines is a 'hot' topic, and this manuscript provides extremely important and timely new information about how RSC and ISW2 find the nucleosomes they slide. Intriguingly, although both remodelers analyzed in this study can diffuse along DNA, the diffusion mechanisms are substantially different, with extremely interesting mechanistic implications.
The strong directional preference in nucleosome sliding by ISW2 dictated by the direction it approaches the nucleosomes from during 1D sliding on DNA is a very intriguing result with interesting implications for the regulation of nucleosome organization around promoters. It will be of great interest to the scientific community and will undoubtedly inspire future research.
Relatively little is known about nucleosome sliding at longer ranges (>100bp), and this manuscript provides a unique view into such sliding and also establishes a versatile methodology for future studies.

Weaknesses:
All measurements were conducted at 5pN tension, which induces unwrapping of the outer DNA gyre from nucleosomes. This could potentially represent a limitation for experiments involving nucleosomes, since partial nucleosome unwrapping could affect the behavior of remodelers, especially their sliding of nucleosomes.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation