Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMargaret SchlichtingUniversity of Toronto, Toronto, Canada
- Senior EditorTirin MooreStanford University, Howard Hughes Medical Institute, Stanford, United States of America
Reviewer #1 (Public Review):
Summary:
The authors ran a series of experiments with separate subject populations, different stimuli, and on two different MRI scanners (one 3T, one 7T) to establish a scenes-selective region on the intraparietal gyrus that they decided to name PIGS. I think that IPA (intraparietal place area) would also have been a good choice with an allusion to a beverage rather than a domestic animal. The authors show that PIGS can be detected robustly through a series of experiments. They anatomically and functionally separate PIGS from nearby V6, which encodes optic flow. The authors determined that PIGS encodes ego-motion.
Strengths:
The robust detection of PIGS in several experiments with different sets of participants and on different scanners makes these results convincing. The functional differentiation is well executed.
Weaknesses:
The distinction of PIGS from nearby OPA, which has also been implied in navigation and ego-motion, is not as clear as it could be.
Impact:
Overall, this is a valuable contribution to the cognitive neuroscience of the visual system. It shows that there is still room for discovering details of visual processing, given recent advances in scanning technology, statistical methods, and larger sample sizes.
Reviewer #2 (Public Review):
Summary
The authors report an extensive series of neuroimaging experiments (at both 3T and 7T) to provide evidence for a scene-selective visual area in the human posterior parietal cortex (PIGS) that is distinct from the main three (parahippocampal place area, PPA; occipital place area, OPA; medial place area, MPA) typically reported in the literature. Further, they argue that in comparison with the other three, this region may specifically be involved in representing ego-motion in natural contexts. The characterization of this scene-selective region provides a useful reference point for studies of scene processing in humans.
Strengths
One of the major strengths of the work is the extensive series of experiments reported, showing clear reproducibility of the main finding and providing functional insight into the region studied. The results are clearly presented and for the most part, convincing.
Weaknesses
One of the major weaknesses of the work is the failure to relate the current results to other findings in the literature, making it hard to assess whether it is is a "previously undescribed scene-selective site".
First, the scene-selective region identified appears to overlap with regions that have previously been identified in terms of their retinotopic properties. In particular, it is unclear whether this region overlaps with V7/IPS0 and/or IPS1. This is particularly important since prior work has shown that OPA often overlaps with v7/IPS0 (Silson et al, 2016, Journal of Vision). The findings would be much stronger if the authors could show how the location of PIGS relates to retinotopic areas (other than V6, which they do currently consider). I wonder if the authors have retinotopic mapping data for any of the participants included in this study. If not, the authors could always show atlas-based definitions of these areas (e.g. Wang et al, 2015, Cerebral Cortex).
Second, recent studies have reported a region anterior to OPA that seems to be involved in scene memory (Steel et al, 2021, Nature Communications; Steel et al, 2023, The Journal of Neuroscience; Steel et al, 2023, biorXiv). Is this region distinct from PIGS? Based on the figures in those papers, the scene memory-related region is inferior to V7/IPS0, so characterizing the location of PIGS to V7/IPS0 as suggested above would be very helpful here as well.
If PIGS overlaps with either of V7/IPS0 or the scene memory-related area described by Steel and colleagues, then arguably it is not a newly defined region (although the characterization provided here still provides new information).
Another reason that it would be helpful to relate PIGS to this scene memory area is that this scene memory area has been shown to have activity related to the amount of visuospatial context (Steel et al, 2023, The Journal of Neuroscience). The conditions used to show the sensitivity of PIGS to ego-motion also differ in the visuospatial context that can be accessed from the stimuli. Even if PIGS appears distinct from the scene memory area, the degree of visuospatial context is an alternative account of what might be represented in PIGS.
Reviewer #3 (Public Review):
Summary:
The authors report a scene-selective area in the posterior intraparietal gyrus (PIGS). This area lies outside the classical three scene-selective regions (PPA/TPA, RSC/MPA, TOS/OPA), and is selective for ego-motion.
Strengths:
The authors firmly establish the location and selectivity of the new area through a series of well-crafted controlled experiments. They show that the area can be missed with too much smoothing, thus providing a case for why it has not been previously described. They show that it appears in much the same location in different subjects, with different magnetic field strengths, and with different stimulus sets. Finally, they show that it is selective for ego-motion - defined as a series of sequential photographs of an egocentric trajectory along a path. They further clarify that the area is not generically motion-selective by showing that it does not respond to biological motion without an ego-motion component to it. All statistics are standard and sound; the evidence presented is strong.
Weaknesses:
There are few weaknesses in this work. If pressed, I might say that the stimuli depicting ego-motion do not, strictly speaking, depict motion, but only apparent motion between 2m apart photographs. However, this choice was made to equate frame rates and motion contrast between the 'ego-motion' and a control condition, which is a useful and valid approach to the problem. Some choices for visualization of the results might be made differently; for example, outlines of the regions might be shown in more plots for easier comparison of activation locations, but this is a minor issue.
This is a very strong paper.