Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAleksandra WalczakÉcole Normale Supérieure - PSL, Paris, France
- Senior EditorAleksandra WalczakÉcole Normale Supérieure - PSL, Paris, France
Reviewer #1 (Public Review):
Summary:
This work extends previous agent-based models of murine muscle regeneration by the authors (especially Westman et al., 2021) and by others (especially Khuu et al, 2023) by incorporating additional agent rules (altogether now based on over 100 published studies), threshold parameters and interactions with fields of cytokines and growth factors as well as capillaries (dynamically changing through damage and angiogenesis) and lymphatic vessels. The estimation of 52 unknown parameters against three time courses of tissue-scale observables (muscle cross-sectional area recovery, satellite stem cell count and fibroblast cell count) employs the CaliPro algorithm (Joslyn et al., 2021) and sensitivity analysis. The model is validated against additional time courses of tissue-scale observables and qualitative perturbation data, which match for almost all conditions. This model is here used to predict (also non-monotonic) responses of (combinations of) cytokine perturbations but it moreover represents a valuable resource for further analysis of emergent behavior across multiple spatial scales in a physiologically relevant system.
Strengths:
This work (almost didactically) demonstrates how to develop, calibrate, validate and analyze a comprehensive, spatially resolved, dynamical, multicellular model. Testable model predictions of (also non-monotonic) emergent behaviors are derived and discussed. The computational model is based on a widely-used simulation platform and shared openly such that it can be further analyzed and refined by the community.
Weaknesses:
While the parameter estimation approach is sophisticated, this work does not address issues of structural and practical non-identifiability (Wieland et al., 2021, DOI:10.1016/j.coisb.2021.03.005) of parameter values, given just tissue-scale summary statistics, and does not address how model predictions might change if alternative parameter combinations were used. Here, the calibrated model represents one point estimate (column "Value" in Suppl. Table 1) but there is specific uncertainty of each individual parameter value and such uncertainties need to be propagated (which is computationally expensive) to the model predictions for treatment scenarios.
Suggested treatments (e.g. lines 484-486) are modeled as parameter changes of the endogenous cytokines (corresponding to genetic mutations!) whereas the administration of modified cytokines with changed parameter values would require a duplication of model components and interactions in the model such that cells interact with the superposition of endogenous and administered cytokine fields. Specifically, as the authors also aim at 'injections of exogenously delivered cytokines' (lines 578, 579) and propose altering decay rates or diffusion coefficients (Fig. 7), there needs to be a duplication of variables in the model to account for the coexistence of cytokine sub-types. One set of equations would have unaltered (endogenous) and another one have altered (exogenous or drugged) parameter values. Cells would interact with both of them.
This work shows interesting emergent behavior from nonlinear cytokine interactions but the analysis does not provide insights into the underlying causes, e.g. which of the feedback loops dominates early versus late during a time course.
Reviewer #2 (Public Review):
Summary:
In the paper, the authors use a cellular Potts model to investigate muscle regeneration. The model is an attempt to combine many contributors to muscle regeneration into one coherent framework. I believe the resulting model has the potential to be very useful in investigating the complex interplay of multiple actors contributing to muscle regeneration.
Strengths:
The manuscript identified relevant model parameters from a long list of biological studies. This collation of a large amount of literature into one framework has the potential to be very useful to other authors. The mathematical methods used for parameterization and validation are transparent.
Weaknesses:
I have a few concerns which I believe need to be addressed fully.
My main concerns are the following:
The model is compared to experimental data in multiple results figures. However, the actual experiments used in these figures are not described. To me as a reviewer, that makes it impossible to judge whether appropriate data was chosen, or whether the model is a suitable descriptor of the chosen experiments. Enough detail needs to be provided so that these judgements can be made.
Do I understand it correctly that all simulations are done using the same initial simulation geometry? Would it be possible to test the sensitivity of the paper results to this geometry? Perhaps another histological image could be chosen as the initial condition, or alternative initial conditions could be generated in silico? If changing initial conditions is an unreasonably large request, could the authors discuss this issue in the manuscript?
Cytokine knockdowns are simulated by 'adjusting the diffusion and decay parameters' (line 372). Is that the correct simulation of a knockdown? How are these knockdowns achieved experimentally? Wouldn't the correct implementation of a knockdown be that the production or secretion of the cytokine is reduced? I am not sure whether it's possible to design an experimental perturbation which affects both parameters.
The premise of the model is to identify optimal treatment strategies for muscle injury (as per the first sentence of the abstract). I am a bit surprised that the implemented experimental perturbations don't seem to address this aim. In Figure 7 of the manuscript, cytokine alterations are explored which affect muscle recovery after injury. This is great, but I don't believe the chosen alterations can be done in experimental or clinical settings. Are there drugs that affect cytokine diffusion? If not, wouldn't it be better to select perturbations that are clinically or experimentally feasible for this analysis? A strength of the model is its versatility, so it seems counterintuitive to me to not use that versatility in a way that has practical relevance. - I may well misunderstand this though, maybe the investigated parameters are indeed possible drug targets.
A similar comment applies to Figure 5 and 6: Should I think of these results as experimentally testable predictions? Are any of the results surprising or new, for example in the sense that one would not have expected other cytokines to be affected as described in Figure 6?
In figure 4, there were differences between the experiments and the model in two of the rows. Are these differences discussed anywhere in the manuscript?
The variation between experimental results is much higher than the variation of results in the model. For example, in Figure 3 the error bars around experimental results are an order of magnitude larger than the simulated confidence interval. Do the authors have any insights into why the model is less variable than the experimental data? Does this have to do with the chosen initial condition, i.e. do you think that the experimental variability is due to variation in the geometries of the measured samples?
Is figure 2B described anywhere in the text? I could not find its description.