Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorBavesh KanaUniversity of the Witwatersrand, Johannesburg, South Africa
- Senior EditorBavesh KanaUniversity of the Witwatersrand, Johannesburg, South Africa
Reviewer #1 (Public Review):
Summary:
This study explores the relationship between guanine-quadruplex (G4) structures and pathogenicity islands (PAIs) in 89 pathogenic strains. G4 structures were found to be non-randomly distributed within PAIs and conserved within the same strains. Positive correlations were observed between G4s and GC content across various genomic features, suggesting a link between G4 structures and GC-rich regions. Differences in GC content between PAIs and the core genome underscored the unique nature of PAIs. High-confidence G4 structures in Escherichia coli's regulatory regions were identified, influencing DNA integration within PAIs. These findings shed light on the molecular mechanisms of G4-PAI interactions, enhancing our understanding of bacterial pathogenicity and G4 structures in infectious diseases.
Strengths:
The findings of this study hold significant implications for our understanding of bacterial pathogenicity and the role of guanine-quadruplex (G4) structures.
Molecular Mechanisms of Pathogenicity: The study highlights that G4 structures are not randomly distributed within pathogenicity islands (PAIs), suggesting a potential role in regulating pathogenicity. This insight into the uneven distribution of G4s within PAIs provides a basis for further research into the molecular mechanisms underlying bacterial pathogenicity.
Conservation of G4 Structures: The consistent conservation of G4 structures within the same pathogenic strains suggests that these structures might play a vital and possibly conserved role in the pathogenicity of these bacteria. This finding opens doors for exploring how G4s influence virulence across different pathogens.
Unique Nature of PAIs: The differences in GC content between PAIs and the core genome underscore the unique nature of PAIs. This distinction suggests that factors such as DNA topology and G4 structures might contribute to the specialized functions and characteristics of PAIs, which are often associated with virulence genes.
Regulatory Role of G4s: The identification of high-confidence G4 structures within regulatory regions of Escherichia coli implies that these structures could influence the efficiency or specificity of DNA integration events within PAIs. This finding provides a potential mechanism by which G4s can impact the pathogenicity of bacteria.
Weaknesses:
No weaknesses were identified by this reviewer.
Overall, the study provides fundamental insights into the pathogenicity island and conservation of G4 motifs.
Reviewer #2 (Public Review):
Summary:
In the manuscript entitled "The Intricate Relationship of G-Quadruplexes and Pathogenicity Islands: A Window into Bacterial Pathogenicity" Bo Lyu explored the interactions between guanine-quadruplex (G4) structures and pathogenicity islands (PAIs) in 89 bacterial genomes through a rigorous computational approach. This paper handles an intriguing and complex topic in the field of pathogenomics. It has the potential to contribute significantly to the understanding of G4-PAI interactions and bacterial pathogenicity.
Strengths:
- The chosen research area.
- The summarizing of the results through neat illustrations.
Weaknesses:
This reviewer did not find any significant weaknesses.
Reviewer #3 (Public Review):
The main problem with the work is that the results are only descriptive and do not allow any inferences or conclusions about the importance of the function of G4 structures. The discussion and conclusions are poor. The results are preliminary and in order to try to make the analysis more interesting, it should be further extended and the data must be explored in a much greater depth.