Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJungmin ChoiKorea University, Seoul, Republic of Korea
- Senior EditorMurim ChoiSeoul National University, Seoul, Republic of Korea
Reviewer #1 (Public Review):
Summary:
Zhang et al. provide valuable data for understanding molecular features of the human spinal cord. The authors made considerable efforts to acknowledge and objectively address the limitations of Visium while attempting to overcome them by utilizing single-nucleus RNA sequencing (snRNA-seq) from the same tissue. By mapping snRNA-seq clusters to Visium data, they offer spatial information, complemented by RNA-ISH and immunofluorescence (IF) validation. They also discuss gender-related differences and the similarities between human and mouse data, aiming to establish a crucial foundation for experimental research. However, I have some comments below.
1. The observation of gender-related differences is interesting. The authors reported that SCN10A, associated with nociceptos, exhibited stronger expression in females. While they intend to validate this finding through IF, the quantitative difference is not clearly observed in the IF data (Figure 5f). It would be essential to provide validation through DAPI-based cell counts, demonstrating the difference in CHAT/SCNA10A co-expression.
2. It is meritorious that in novel features of the transcriptomic study, the authors considered gender-related differences and similarities between humans and mice. Nevertheless, despite the extensive bioinformatics-based analyses performed, the results mostly confirm what has been previously reported (Nguyen et al. 2021; Yadav et al. 2023; Jung et al. 2023).
3. The study did not perform snRNA-seq in the DRG. The limitations of Visium in cell type separation are acknowledged, and the authors are aware that Visium alone has limitations in describing cell expression patterns. The authors need to validate their findings via analyses of public DRG snRNA-seq data (Jung et al. 2023 Ncom; Nguyen et al. 2021eLife) before drawing broad conclusions.
4. Figure 7's comparison between human Visium spot data and Renthal et al.'s mouse snRNA-seq may have limitations as Visium spot data could not provide a transcriptional profile at the single cell resolution. The authors need to clarify this point.
5. Recent findings indicate that type 2 cytokines can directly stimulate sensory neurons. This includes the expression of IL-4RA, IL31RA, and IL13RA in DRG. These findings support the role of JAK kinase inhibitors in mediating chronic itch. Demonstrating the expression of these itch receptors in DRG would be valuable.
6. Given that juxtacrine and paracrine signals operate from 0 to 200 um, spatial information is vital to understanding intercellular communication. The presentation of spatial information using Visium is meaningful, and more comprehensive analyses of potential interaction based on distance should be provided, beyond the top 10 interactions (Figure 8).
7. The gender-related differences are interesting and, if possible, it would be interesting to explore whether age-related differences or degeneration-related factors exist. Using public data could allow the examination of age-related changes.
Reviewer #2 (Public Review):
Summary:
In this paper, the authors generated a comprehensive dataset of human spinal cord transcriptome using single-cell RNA sequencing and the Visium spatial transcriptomics platform. They employed Visium data to determine the spatial orientation of each cell type. Using single-cell RNA sequencing data, they identified differentially expressed genes by comparing human and mouse samples, as well as male and female samples.
Strengths:
This study offers a thorough exploration of both cellular and spatial heterogeneity within the human spinal cord. The resulting atlas datasets and analysis findings represent valuable resources for the neuroscience community.
Weaknesses:
The analysis of spatial transcriptomics data was conducted as it is single-cell RNAseq data. However, there are established tools for effectively integrating these two types of data. The incorporation of deconvolution methods could enhance the characterization of each spot's cell type composition.
Reviewer #3 (Public Review):
Summary:
Zhang et al sought to use spatial transcriptomics and single-nucleus RNA sequencing to classify human spinal cord neurons. The authors reported 17 clusters on 10x Visium slides (6 donors) and 21 clusters by single-nucleus sequencing (9 donors). The authors tried to compare the results to those reported in mice and claimed similar patterns with some differing genes.
Strengths:
The manuscript provides a valuable database for the molecular and cellular organization of adult human spinal cords in addition to published datasets (Andersen, et al. 2023; Yadav, et al. 2023).
Weaknesses:
The results are largely observatory and lack quantitative analysis. Moreover, the assertions regarding the sex differences in motor neurons and the potential interactions between DRG and spinal cord neuronal subclusters appear preliminary and necessitate more rigorous validation.