Assembly of neuron- and radial glial cell-derived extracellular matrix molecules promotes radial migration of developing cortical neurons

  1. Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
  2. Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
  3. Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
  4. Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
  5. Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
  6. Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
  7. Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Fadel Tissir
    Université Catholique de Louvain, Brussels, Belgium
  • Senior Editor
    K VijayRaghavan
    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India

Reviewer #1 (Public Review):

Summary:
In the present study, authors found the ternary complex formed by NCAN, TNC, and HA as an important factor facilitating the multipolar to bipolar transition in the intermediate zone (IZ) of the developing cortex. NCAM binds HA via the N-terminal Link modules, meanwhile, TNC cross-links NCAN through the CDL domain at the C-terminal. The expression and right localization of these three factors facilitate the multipolar-bipolar transition necessary for immature neurons to migrate radially. TNC and NCAM are also involved in neuronal morphology. The authors used a wide range of techniques to study the interaction between these three molecules in the developing cortex. In addition, single and double KO mice for NCAN and TNC were analyzed to decipher the role of these molecules in neuronal migration and morphology.

Strengths:
The study of the formation of the cerebral cortex is crucial to understanding the pathophysiology of many neurodevelopmental disorders associated with malformation of the cerebral cortex. In this study, the authors showed, for the first time, that the ternary complex formed by NCAN, TNC, and HA promotes neuronal migration. The results regarding the interaction between the three factors forming the ternary complex are convincing.

Weaknesses:
However, regarding the in vivo experiments, the authors should consider some points for the interpretation of the results:
-The authors did not use the proper controls in their experiments. For embryonic analysis, such as cortical migration, neuronal morphology, and protein distribution (Fig. 6, 7, and 9), mutant mice should be compared with control littermates, since differences in the results could be due to differences in embryonic stages. For example, in Fig. 6 the dKO is more developed than the WT embryo.
-The authors claim that NCAM and TNC are involved in neuronal migration from experiments using single KO embryos. This is a strong statement considering the mild results, with no significant difference in the case of TNC KO embryos, and once again, using embryos from different litters.
-The measurement of immunofluorescence intensity is not the right method to compare the relative amount of protein between control and mutant embryos unless there is a right normalization.

Reviewer #2 (Public Review):

Summary:
ECM components are prominent constituents of the pericellular environment of CNS cells and form complex and dynamic interactomes in the pericellular spaces. Based on bioinformatic analysis, more than 300 genes have been attributed to the so-called matrisome, many of which are detectable in the CNS. Yet, not much is known about their functions while increasing evidence suggests important contributions to developmental processes, neural plasticity, and inhibition of regeneration in the CNS. In this respect, the present work offers new insights and adds interesting aspects to the facets of ECM contributions to neural development. This is even more relevant in view of the fact that neurocan has recently been identified as a potential risk gene for neuropsychiatric diseases. Because ECM components occur in the interstitial space and are linked in interactomes their study is very difficult. A strength of the manuscript is that the authors used several approaches to shed light on ECM function, including proteome studies, the generation of knockout mouse lines, and the analysis of in vivo labeled neural progenitors. This multi-perspective approach permitted to reveal hitherto unknown properties of the ECM and highlighted its importance for the overall organization of the CNS.

Strengths:
Systematic analysis of the ternary complex between neurone, TNC, and hyaluronic acid; establishment of KO mouse lines to study the function of the complex, use of in utero electroporation to investigate the impact on neuronal migration;

Weaknesses:
The analysis is focused on neuronal progenitors, however, the potential impact of the molecules of interest, in particular, their removal on differentiation and /or survival of neural stem/progenitor cells is not addressed. The potential receptors involved are not considered. It also seems that rather the passage to the outer areas of the forming cortex is compromised, which is not the same as the migration process. The movement of the cells is not included in the analysis.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation