The delayed kinetics of Myddosome formation explains why Aβ aggregates trigger TLR4 less efficiently than LPS

  1. Department of Chemistry, University of Cambridge, Lensfield road, Cambridge CB2 1EW
  2. Cambridge Dementia research centre, Clifford Allbutt Building, Cambridge Biomedical Campus, Hills Road. Cambridge, CB2 0AH
  3. Department of Medicine, Box 157, Level 5, Addenbrooke’s Hospital, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a response from the authors (if available).

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Jungsan Sohn
    Johns Hopkins University School of Medicine, Baltimore, United States of America
  • Senior Editor
    Carla Rothlin
    Yale University, New Haven, United States of America

Joint Public Review:

Summary:

In this manuscript, the authors set out to understand how different TLR4 agonists trigger Myddosome assembly and seek to examine how the potent LPS agonist induces a heightened TLR4 response. A strength of the study is that the authors employ a novel light sheet imaging modality coupled to nanopipette delivery of TLR4 ligands. The authors use this technological innovation to resolve the dynamics of Myddosome formation within the whole cell volume of macrophage cell lines expressing MyD88-YFP. The main finding is that the kinetics of Myddosome formation is slower for the weaker agonist Abeta than LPS. However, Abeta amyloids resulted in the formation of larger MyD88-YFP puncta that persisted for longer. The authors suggest the slower kinetics of formation and larger puncta size reflect how Abeta amyloids are a less efficient TLR4 agonist. Many Toll-like receptors are now known to recognize endogenous produced danger signals and microbially derived molecules. This work is the first to compare the signaling kinetics of endogenous versus microbially derived TLR agonists.

Strengths:

A key strength of this work is the technological achievement of imaging Myddosomes within the entire cell volume and using a nanopipette to administer ligands directly to single cells. The authors also combine this light sheet microscopy with STORM imaging to gain a super-resolved view of the assembly of Myddosomes. These findings suggest that Myddosomes formed in response to Abeta have a more irregular morphology. We conclude that these technological achievements are significant in improving our understanding of the dynamics of TLR4 signaling in response to diverse agonists. Given the limited literature on the molecular dynamics of innate immune signal transduction, this study is an important addition to the field.

Weaknesses:

One limitation of the paper is that a suitable explanation for how larger Myddosomes would contribute to an attenuated downstream signaling response. Do the larger clusters of nucleated MyD88 polymers reflect inefficiency in assembling fully formed Myddosomes that contain IRAK4/2? Could the MyD88-GFP puncta be stained with antibodies against IRAK4 (or IRAK2) to determine the frequency and probably of the two ligands to stimulate signal transduction beyond MyD88 assembly?

A second weakness is the discussion. The authors should explore other explanations for the observed differences in Myddosome formation between TLR4 agonists. For example, could the observed delay in Myddosome assembly in response to Abeta be due to different binding affinity or kinetics to TLR4? Can this be ruled out?

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation