FMNL2 regulates actin for ER and mitochondria distribution in oocyte meiosis

  1. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
  2. Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Carmen Williams
    National Institute of Environmental Health Sciences, Research Triangle Park, United States of America
  • Senior Editor
    Wei Yan
    The Lundquist Institute, Torrance, United States of America

Reviewer #1 (Public Review):

Summary:
The presented study focuses on the role of formin-like 2 (FMNL2) in oocyte meiosis. The authors assessed FMNL2 expression and localization in different meiotic stages and subsequently, by using siRNA, investigated the role of FMNL2 in spindle migration, polar body extrusion, and distribution of mitochondria and endoplasmic reticulum (ER) in mouse oocytes.

Strengths:
Novelty in assessing the role of formin-like 2 in oocyte meiosis.

Weaknesses:
Methods are not properly described.
Overstating presented data.
It is not clear what statistical tests were used.

My main concern is that there are missing important details of how particular experiments and analyses were done. The material and methods section is not written in the way that presented experiments could be repeated - it is missing basic information (e.g., used mouse strain, timepoints of oocytes harvest for particular experiments, used culture media, image acquisition parameters, etc.). Some of the presented data are overstated and incorrectly interpreted. It is not clear to me how the analysis of ER and mitochondria distribution was done, which is an important part of the presented data interpretation. I'm also missing important information about the timing of particular stages of assessed oocytes because the localization of both ER and mitochondria differs at different stages of oocyte meiosis. The data interpretation needs to be justified by proper analysis based on valid parameters, as there is considerable variability in the ER and mitochondria structure and localization across oocytes based on their overall quality and stage.

Reviewer #2 (Public Review):

Summary:
This research involves conducting experiments to determine the role of Fmnl2 during oocyte meiosis I.

Strengths:
Identifying the role of Fmnl2 during oocyte meiosis I is significant.

Weaknesses:
The quantitative analysis and the used approach to perturb FMNL2 function are currently incomplete and would benefit from more confirmatory approaches and rigorous analysis.

1- Most of the results are expected. The new finding here is that FMNL2 regulates cytoplasmic F-actin in mouse oocytes, which is also expected given the role of FMNL2 in other cell types. Given that FMNL2 regulates cytoplasmic F-actin, it is very expected to see all the observed phenotypes. It is already established that F-actin is required for spindle migration to the oocyte cortex, extruding a small polar body and normal organelle distribution and functions.

2-The authors used Fmnl2 cRNA to rescue the effect of siRNA-mediated knockdown of Fmnl2. It is not clear how this works. It is expected that the siRNA will also target the exogenous cRNA construct (which should have the same sequence as endogenous Fmnl2) especially when both of them were injected at the same time. Is this construct mutated to be resistant to the siRNA?

3-The authors used only one approach to knockdown FMNL2 which is by siRNA. Using an additional approach to inhibit FMNL2 would be beneficial to confirm that the effect of siRNA-mediated knockdown of FMNL2 is specific.

Reviewer #3 (Public Review):

Summary:
The authors focus on the role of formin-like protein 2 in the mouse oocyte, which could play an important role in actin filament dynamics. The cytoskeleton is known to influence a number of cellular processes from transcription to cytokinesis. The results show that downregulation of FMNL2 affects spindle migration with resulting abnormalities in cytokinesis in oocyte meiosis I.

Weaknesses:
The overall description of methods and figures is overall dismissively poor. The description of the sample types and number of replicate experiments is impossible to interpret throughout, and the quantitative analysis methods are not adequately described. The number of data points presented is unconvincing and unlikely to support the conclusions. On the basis of the data presented, the conclusions appear to be preliminary, overstated, and therefore unconvincing.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation