Commissureless acts as a substrate adapter in a conserved Nedd4 E3 ubiquitin ligase pathway to promote axon growth across the midline

  1. Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA, 19104, USA

Editors

  • Reviewing Editor
    Paschalis Kratsios
    University of Chicago, Chicago, United States of America
  • Senior Editor
    K VijayRaghavan
    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India

Reviewer #1 (Public Review):

Summary:
This study is focused on an important aspect of axon guidance at the central nervous system (CNS) midline: how neurons extend axons that either do or do not cross the CNS midline. The authors here address contradictory work in the field relating to how cell surface expression of the slit receptor Robo1 is regulated to generate crossed and non-crossed axon trajectories during Drosophila neural development. They use fly genetics, cell lines, and biochemical assessments to define a complex consisting of the commissureless, Nedd4 and Robo1 proteins necessary for regulating Robo1 protein expression. This work resolves certain remaining questions in the field regarding midline axon guidance, with strengths outweighing weaknesses; however, addressing some of these weaknesses would strengthen this study.

Strengths:
Strengths include:
-The use of well-controlled genetic gain-of-function (overexpression) approaches in vivo in Drosophila to show that phosphorylation sites (there are 2, and this study allows for assessment of the contributions made by each) in the commissureless (Comm) protein are indeed required for Comm function with respect to regulating axon midline guidance via their role in directing Comm-mediated Robo1 ubiquitination and degradation in the lysosome.
-The demonstration that in vitro, and in a sensitized genetic background in vivo, the Nedd4 ubiquitin ligase regulates Robo1 protein cell surface distribution and also midline axon crossing in vivo.
-Important evidence here that serves to resolve many questions raised by previous studies (not from these authors) regarding how Robo1 is regulated by Comm and Nedd4 family ubiquitin ligases. Further, these results are likely to have implications for thinking about the regulation of midline guidance in more complex nervous systems.

Weaknesses:
-The authors in part rely on GOF genetic approaches to infer roles for Comm and Nedd4, and this is understood in light of the lack of phenotypes in certain mutant backgrounds, providing evidence for their capabilities in these GOF paridigms. However, there are a few missed opportunities in some experiments that would allow for conclusions to be drawn regarding endogenous Comm function, some involving relatively simple inclusion of null mutants in the sensitized genetic backgrounds used here.
-A weakness beyond the purview of revision but important to mention is that the authors chose not to complement their GOF experiments with gene editing approaches to generate endogenous PY mutant alleles of Comm that might have been useful in genetic interaction experiments directed toward revealing roles for endogenous Comm in the regulation of Robo1.
-There are very minor concerns regarding protein expression levels in various experiments that should be easy to address.

Reviewer #2 (Public Review):

Summary:
Sullivan and Bashaw delve into the mechanisms that drive neural circuit assembly, and specifically, into the regulation of cell surface proteins that mediate axon pathfinding. During nervous system development, axons must traverse a molecularly and physically complex extracellular milieu to reach their synaptic targets. A fundamental, conserved repulsive signaling pathway is initiated by the Slit-Robo ligand-receptor pair. Robo, expressed on axon growth cones, binds Slit, secreted by midline cells, to prevent "pre-crossing" and "re-crossing" of axons at the midline. To control this repulsion, Robo surface levels are tightly regulated. In Drosophila, Commissureless (Comm) downregulates Robo surface levels and is required for axon crossing at the midline. Several studies suggest that PY motifs in Comm are required to localize Robo to endosomes. PY motifs have been shown to bind WW-domain containing proteins including the ubiquitin ligase Nedd4 family, so the authors propose that Comm may regulate Robo through Nedd4 interactions. Previous studies have hinted at a role for Nedd4-mediated ubiquitination of Comm in the regulation of Robo localization, but there have also been conflicting data. For example, Comm mutants that are unable to be ubiquitinated mimic wild-type Comm, suggesting that ubiquitination of Comm is not required for regulation of Robo. The current study utilizes a suite of genetic analyses in Drosophila to resolve discrepancies pertaining to the mode of Comm-dependent regulation of Robo1 and proposes that Comm acts as an adapter for the Nedd4 ubiquitin ligase to recognize Robo1 as a substrate. The authors also demonstrate that Nedd4 is indeed required for midline crossing.

Strengths:
While this work is more incremental rather than field-shifting, it is nonetheless an excellent example of a rigorous, thorough analysis that culminates in enriching our mechanistic understanding of how neurons regulate cell-surface receptors in a spatiotemporal manner to control fundamental steps of circuit wiring. The experimental approach is thorough, and the manuscript is extremely well-written.

Weaknesses:
Some key experiments (eg. complex formation) were performed in cell culture in an overexpression background. Also, there was a missed opportunity to bolster the model proposed by using Comm PY mutants in several experiments. Finally, Comm PY domains are required for proper Comm localization in neurons, but corresponding Robo localization was not analyzed.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation