Heterozygous expression of a Kcnt1 gain-of-function variant has differential effects on SST- and PV-expressing cortical GABAergic neurons

  1. Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
  2. Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
  3. Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
  4. Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
  5. School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
  6. Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
  7. Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
  8. Department of Chemistry, Vanderbilt University, Nashville, TN, USA
  9. Institute for Genomic Medicine, Columbia University, New York, NY, USA
  10. Department of Neurology, Columbia University, New York, NY, USA
  11. School of Neuroscience, Virginia Tech, Blacksburg, VA, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Michelle Antoine
    National Institute on Alcohol Abuse and Alcoholism, Bethesda, United States of America
  • Senior Editor
    Sacha Nelson
    Brandeis University, Waltham, United States of America

Reviewer #1 (Public Review):

Summary:
This manuscript reports the effects of a heterozygous mutation in the KCNT1 potassium channels on the properties of ion currents and the firing behavior of excitatory and inhibitory neurons in the cortex of mice expressing KCNT1-Y777H. In humans, this mutation as well as multiple other heterozygotic mutations produce very severe early-onset seizures and produce a major disruption of all intellectual function. In contrast, in mice, this heterozygous mutation appears to have no behavioral phenotype or any increased propensity to seizures. A relevant phenotype is, however, evident in mice with the homozygous mutation, and the authors have previously published the results of similar experiments with the homozygotes. As perhaps expected, the neuronal effects of the heterozygous mutation presented in this manuscript are generally similar but markedly smaller than the previously published findings on homozygotes. There are, however, some interesting differences, particularly on PV+ interneurons, which appear to be more excitable than wild type in the heterozygotes but more excitable in the heterozygotes. This raises the interesting question (which could be more explicitly discussed by the authors) as to whether the reported changes represent homeostatic events that suppress the seizure phenotype in the mouse heterozygotes or simply changes in excitability that do not reach the threshold for behavioral outcomes.

Strengths and Weaknesses:

  1. The authors find that the heterozygous mutation in PV+ interneurons increases their excitability, a result that is opposite from their previous observation in neurons with the corresponding homozygous mutation. They propose that this results from the selective upregulation of a persistent sodium current INaP in the PV+ interneurons. While the observations are very interesting, there are three issues concerning this interpretation that should be addressed:
    A) The protocol for measuring the INaP current could potentially lead to results that could be (mis)interpreted in different ways in different cells. First, neither K currents nor Ca currents are blocked in these experiments. Instead, TTX is applied to the cells relatively rapidly (within 1 second) and the ramp protocol is applied immediately thereafter. It is stated that, at this time, Na currents and INaP are fully blocked but that any effects on Na-activated K currents are minimal. In theory, this would allow the pre- to post-difference current to represent a relatively uncontaminated INaP. This would, however, only work if activation of KNa currents following Na entry is very slow, taking many seconds. A good deal of literature has suggested that the kinetics of activation of KNa currents by Na influx vary substantially between cell types, such that single action potentials and single excitatory synaptic events rapidly evoke KNa currents in some cell types. This is, of course, much faster than the time of TTX application. Most importantly, the kinetics of KNa activation may be different in different neuronal types, which would lead to errors that could produce different estimates of INaP in PV+ interneurons vs other cell types.
    B) As the authors recognize, INaP current provides a major source of cytoplasmic sodium ions for the activation. An expected outcome of increased INaP is, therefore, further activation of KNa currents, rather than a compensatory increase in an inward current that counteracts the increase in KNa currents, as is suggested in the discussion.
    C) Numerical simulations, in general, provide a very useful way to evaluate the significance of experimental findings. Nevertheless, while the in-silico modeling suggests that increases in INaP can increase firing rate in models of PV+ neurons, there is as yet insufficient information on the relative locations of the INaP channels and the kinetics of sodium transfer to KNa channels to evaluate the validity of this specific model.

  2. The greatest effect of TTX application would be expected to be the elimination of large transient inward sodium currents. Why are no such currents visible in the control (pre-TTX) or the difference currents (Fig. 2)? Is it possible I missed something in the methods?

  3. As expected, the changes in many of the measured parameters are smaller in the present study with heterozygotes than those previously reported for the homozygous mutation. Some of the statements on the significance of some of the present findings need to be stated more clearly. For example, in the results section describing Fig. 2, it is stated that "In glutamatergic and NFS GABAergic YH-HET neurons, the overall KNa current was increased ...as measured by a significant effect of genotype ...." Later in the same paragraph it is stated that the increases in KNa current are not significant. Apparently, different tests lead to different conclusions. Both for the purpose of understanding the pathophysiological effects of changes in KNa current and for making further numerical simulations, more explicit clarifying statements should be made.

  4. The effects of the KCNT1 channel blocker VU170 on potassium currents are somewhat larger and different from those of TTX, suggesting that additional sources of sodium may contribute to activating KCNT1, as suggested by the authors. Because VU170 is, however, a novel pharmacological agent, it may be appropriate to make more careful statements on this. While the original published description of this compound reported no effect on a variety of other channels, there are many that were not tested, including Na and cation channels that are known to activate KCNT1, raising the possibility of off-target effects.

  5. The experiments were carried out at room temperature. Is it possible that different effects on firing patterns in heterozygotes and homozygotes would be observed at more physiological temperatures?

Reviewer #2 (Public Review):

Summary:
In this manuscript, Shore et al. investigate the consequent changes in excitability and synaptic efficacy of diverse neuronal populations in an animal model of juvenile epilepsy. Using electrophysiological patch-clamp recordings from dissociated neuronal cultures, the authors find diverging changes in two major populations of inhibitory cell types, namely somatostatin (SST)- and parvalbumin (PV)-positive interneurons, in mice expressing a variant of the KCNT1 potassium channel. They further suggest that the differential effects are due to a compensatory increase in the persistent sodium current in PV interneurons in pharmacological and in silico experiments.

Strengths:

  1. Heterozygous KCNT1 gain of function variant was used which more accurately models the human disorder.
  2. The manuscript is clearly written, and the flow is easy to follow. The authors explicitly state the similarities and differences between the current findings and the previously published results in the homozygous KCNT1 gain of function variant.
  3. This study uses a variety of approaches including patch clamp recording, in silico modeling, and pharmacology that together make the claims stronger.
  4. Pharmacological experiments are fraught with off-target effects and thus it bolsters the authors' claims when multiple channel blockers (TTX and VU170) are used to reconstruct the sodium-activated potassium current. Having said that, it would be helpful to see the two drug manipulations be used in the same experiment. Notably, does the more selective blocker VU170 mimic the results of TTX for NFS GABAergic cells in Figure 2? And does it unmask a genotype difference for FS GABAergic cells like the one seen in PV interneurons in Figure 5C3.

Weaknesses:

  1. This study relies on recordings in dissociated cortical neurons. Although specific WT interneurons showed intrinsic membrane properties like those reported for acute brain slices, it is unclear whether the same will be true for those cells expressing KCNT1 variants. This reviewer highly recommends confirming some of the key findings using an ex vivo slice preparation. This is especially important given the discrepant result of reduced excitability of PV cells reported by Gertler et al., 2022 (cited here in the manuscript but not discussed in this context) in acute hippocampal slices for a different KCTN1 gain of function variant.
  2. It is unclear how different pieces of results fit together to form a story about the disease pathophysiology. For example, hyperexcitability of PV cells would suggest more inhibition which would counter seizure propensity. However, spontaneous inhibitory postsynaptic currents show no change in pyramidal neurons. Moreover, how do the authors reconcile that the reductions in synaptic inputs onto interneurons in Figure 3B with the increases in Figure 8? This should be discussed.
  3. Similarly, the results in this work are not entirely internally consistent. For example, given the good correspondence between FS and NFS GABAergic cells with PV and SST expression, why are FS GABAergic cells hyperexcitable in Figure 1? If anything, there is a tendency to show reduced excitability like the NFS GABAergic cells. Also, why do the WT I-V curves look so different between Figures 2 and 5? This reviewer suggests at least a brief explanation in the discussion.
  4. Given the authors' claim that the KCNT1 activation curve is a major contributor to the observed excitability differences in specific GABA cell subtypes, it would be helpful to directly measure the activation curve in the variants experimentally as was done for WT KCNT1 in Figure 6A and use the derived kinetics in the compartmental model.

Reviewer #3 (Public Review):

Summary:
The present manuscript by Shore et al. entitled Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy" describes in vitro and in silico results obtained in cortical neurons from mice carrying the KCNT1-Y777H gain-of-function (GOF) variant in the KCNT1 gene encoding for a subunit of the Na+-activated K+ (KNa) channel. This variant corresponds to the human Y796H variant found in a family with Autosomal Dominant Nocturnal Frontal lobe epilepsy. The occurrence of GOF variants in potassium channel encoding genes is well known, and among potential pathophysiological mechanisms, impaired inhibition has been documented as responsible for KCNT1-related DEEs. Therefore, building on a previous study by the same group performed in homozygous KI animals, and considering that the largest majority of pathogenic KCNT1 variants in humans occur in heterozygosis, the Authors have investigated the effects of heterozygous Kcnt1-Y777H expression on KNa currents and neuronal physiology among cortical glutamatergic and the 3 main classes of GABAergic neurons, namely those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), crossing KCNT1-Y777H mice with PV-, SST- and PV-cre mouse lines, and recording from GABAergic neurons identified by their expression of mCherry (but negative for GFP used to mark excitatory neurons).

The results obtained revealed heterogeneous effects of the variant on KNa and action potential firing rates in distinct neuronal subpopulations, ranging from no change (glutamatergic and VIP GABAergic) to decreased excitability (SST GABAergic) to increased excitability (PV GABAergic). In particular, modelling and in vitro data revealed that an increase in persistent Na current occurring in PV neurons was sufficient to overcome the effects of KCNT1 GOF and cause an overall increase in AP generation.

Strengths:
The paper is very well written, the results clearly presented and interpreted, and the discussion focuses on the most relevant points.

The recordings performed in distinct neuronal subpopulations are a clear strength of the paper. The finding that the same variant can cause opposite effects and trigger specific homeostatic mechanisms in distinct neuronal populations is very relevant for the field, as it narrows the existing gap between experimental models and clinical evidence.

Weaknesses:
My main concern is in the epileptic phenotype of the heterozygous mice investigated. In fact, in their previous paper the Authors state that "...Kcnt1-Y777H heterozygous mice did not exhibit any detectable epileptiform activity" (first sentence on page 4). However, in the present manuscript, they indicate twice in the discussion section that these mice exhibit "infrequent seizures". This relevant difference needs to be clarified to correctly attribute to the novel pathophysiological mechanism a role in seizure occurrence. Were such infrequent seizures clearly identified on the EEG, or were behavioral seizures? Could the authors quantify this "infrequent" value? This is crucial also to place in the proper perspective the Discussion statement regarding "... the increased INaP contribution to ... network hyperexcitability and seizures".

Also, some statistical analysis seems to be missing. For example, I could not find any for the data shown in Fig. 6. Thus, the following statement: "the model PV neurons responded to KCNT1 GOF with decreased AP firing and an increased rheobase" requires proper statistical evaluation.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation