Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a response from the authors (if available).

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Frederic Bard
    Centre de Recherche en Cancérologie de Marseille, MARSEILLE, France
  • Senior Editor
    Jonathan Cooper
    Fred Hutchinson Cancer Research Center, Seattle, United States of America

Reviewer #1 (Public Review):

Summary:
The authors set up a pipeline for automated high-throughput single-molecule fluorescence imaging (htSMT) in living cells and analysis of molecular dynamics.

Strengths:
htSMT reveals information on the diffusion and bound fraction of molecules, dose-response curves, relative estimates of binding rates, and temporal changes of parameters. It enables the screening of thousands of compounds in a reasonable time and proves to be more sensitive and faster than classical cell-growth assays. If the function of a compound is coupled to the mobility of the protein of interest, or affects an interaction partner, which modulates the mobility of the protein of interest, htSMT allows identifying the modulator and getting the first indication of the mechanism of action or interaction networks, which can be a starting point for more in-depth analysis.

Weaknesses:
While elegantly showcasing the power of high-throughput measurements, the authors disclose little information on their microscope setup and analysis procedures. Thus, reproduction by other scientists is limited. Moreover, a critical discussion about the limits of the approach in determining dynamic parameters, the mechanism of action of compounds, and network reconstruction for the protein of interest is missing. In addition, automated imaging and analysis procedures require implementing sensitive measures to assure data and analysis quality, but a description of such measures is missing.

Reviewer #2 (Public Review):

Summary:
McSwiggen et al present a high throughput platform for SPT that allows them to identify pharmaceutics interactions with the diffusional behavior of receptors and in turn to identify potent new ligands and cellular mechanisms. The manuscript is well written, it provides a solid new mentor and a proper experimental foundation

Strengths:
The method capitalizes and extends to existing high throughput toolboxes and is directly applied to multiple receptors and ligands. The outcomes are important and relevant for society. 10^6 cells and >400 ligands per is a significant achievement.

The method can detect functionally relevant changes in transcription factor dynamics and accurately differentiate the ligand/target specificity directly within the cellular environment. This will be instrumental in screening libraries of compounds to identify starting points for the development of new therapeutics. Identifying hitherto unknown networks of biochemical signaling pathways will propel the field of single-particle live cell and quantitative microscopy in the area of diagnostics. The manuscript is well-written and clearly conveys its message.

Weaknesses:
There are a few elements, that if rectified would improve the claims of the manuscript.

The authors claim that they measure receptor dynamics. In essence, their readout is a variation in diffusional behavior that correlates to ligand binding. While ligand binding can result in altered dynamics or /and shift in conformational equilibrium, SPT is not recording directly protein structural dynamics, but their effect on diffusion. They should correct and elaborate on this.

L 148 What do the authors mean 'No correlation between diffusion and monomeric protein size was observed, highlighting the differences between cellular protein dynamics versus purified systems'. This is not justified by data here or literature reference. How do the authors know these are individual molecules? Intensity distributions or single bleaching steps should be presented.

Along the same lines, the data in Figs 2 and 4 show that not only the immobile fraction is increased but also that the diffusion coefficient of the fast-moving (attributed to free) is reduced. The authors mention this and show an extended Fig 5 but do not provide an explanation. How do potential transient ligand binding and the time-dependent heterogeneity in motion (see comment above) contribute to this? Also, in line 216 the authors write "with no evidence" of transient diffusive states. How do they define transient diffusive states? While there are toolboxes to directly extract the existence and abundance of these either by HMM analysis or temporal segmentation, the authors do not discuss or use them.

The authors discuss the methods for extracting kinetic information of ligand binding by diffusion. They should consider the temporal segmentation of heterogenous diffusion. There are numerous methods published in journals or BioRxiv based on analytical or deep learning tools to perform temporal segmentation. This could elevate their analysis of Kon and Koff.

Reviewer #3 (Public Review):

Summary:
The authors aim to demonstrate the effectiveness of their developed methodology, which utilizes super-resolution microscopy and single-molecule tracking in live cells on a high-throughput scale. Their study focuses on measuring the diffusion state of a molecule target, the estrogen receptor, in both ligand-bound and unbound forms in live cells. By showcasing the ability to screen 5067 compounds and measure the diffusive state of the estrogen receptor for each compound in live cells, they illustrate the capability and power of their methodology.

Strengths:
Readers are well introduced to the principles in the initial stages of the manuscript with highly convincing video examples. The methods and metrics used (fbound) are robust. The authors demonstrate high reproducibility of their screening method (R2=0.92). They also showcase the great sensitivity of their method in predicting the proliferation/viability state of cells (R2=0.84). The outcome of the screen is sound, with multiple compounds clustering identified in line with known estrogen receptor biology.

Weaknesses:
- Potential overstatement on the relationship of low diffusion state of ER bound to compound and chromatin state without any work on chromatin level.
- Could the authors clarify if the identified lead compound effects are novel at any level?
- More video example cases on the final lead compounds identified would be a good addition to the current data package.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation