Evolutionary adaptation of the chromodomain of the HP1-protein Rhino allows the integration of chromatin and DNA sequence signals

  1. Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
  2. Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
  3. Howard Hughes Medical Institute, W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, United States
  4. Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a response from the authors (if available).

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Yukiko Yamashita
    Whitehead Institute/MIT, Cambridge, United States of America
  • Senior Editor
    Volker Dötsch
    Goethe University, Frankfurt am Main, Germany

Joint Public Review:

This article is a direct follow-up to the paper published last year in eLife by the same group. In the previous article, the authors discovered a zinc finger protein, Kipferl, capable of guiding the HP1 protein Rhino towards certain genomic regions enriched in GRGGN motifs and packaged in heterochromatin marked by H3K9me3. Unlike other HP1 proteins, Rhino recruitment activates the transcription of heterochromatic regions, which are then converted into piRNA source loci. The molecular mechanism by which Kipferl interacts specifically with Rhino (via its chromodomain) and not with other HP1 proteins remained enigmatic.

In this latest article, the authors go a step further by elucidating the molecular mechanisms important for the specific interaction of Rhino and not other HP1 proteins with Kipferl. A phylogenetic study carried out between the HP1 proteins of 5 Drosophila species led them to study the importance of an AA Glycine at position 31 located in the Rhino chromodomain, an AA different from the AA (aspartic acid) found at the same position in the other HP1 proteins. The authors then demonstrate, through a series of structure predictions, biochemical, and genetic experiments, that this specific AA in the Rhino-specific chromodomain explains the difference in the chromatin binding pattern between Rhino and the other Drosophila HP1 proteins. Importantly, the G31D conversion of the Rhino protein prevents interaction between Rhino and Kipferl, phenocopying a Kipfer mutant.

Strengths:

The authors' effective use of phylogenetic analyses and protein structure predictions to identify a substitution in the chromodomain that allows Rhino's specific interaction with Kipferl is very elegant. Both genetic and biochemical approaches are applied to rigorously probe the proposed explanation. They used a point mutation in the endogenous locus that replaces the Rhino-specific residue with the aspartic acid residue present in all other HP1 family members. This novel allele largely phenocopies the defects in hatch rate, chromatin organization, and piRNA production associated with kipferl mutants, and does not support Kipferl localization to clusters. The data are of high quality, the presentation is clear and concise, and the conclusions are generally well-supported.

Weaknesses:

The reviewers identified potential ways to further strengthen the manuscript.

  1. The one significant omission is RNAseq on the rhino point mutant, which would allow direct comparison to cluster, transposon, and repeat expression in kipferl mutants.

  2. The manuscript would benefit from adding more evolutionary comparisons. The following or similar analyses would help put the finding into a broader evolutionary perspective: i) Is Kipferl's surface interacting with Rhino also conserved in Kipferl orthologs? In other words, are the Rhino-interacting amino acids of Kipferl under any pressure to be conserved? ii) The remarkable conservation of Rhino's G31 is at odds with the arms race that is proposed to be happening between the fly's piRNA pathway proteins and transposons. Does this mean that Rhino's chromodomain is "untouchable" for such positive selection?

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation