Drug-induced changes in connectivity to midbrain dopamine cells revealed by rabies monosynaptic tracing

  1. Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, Irvine, CA, USA 92697-4560
  2. Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
  3. Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA 92697-4560
  4. Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA 92697-4560
  5. Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA 92697-4560

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Naoshige Uchida
    Harvard University, Cambridge, United States of America
  • Senior Editor
    Sacha Nelson
    Brandeis University, Waltham, United States of America

Reviewer #1 (Public Review):

Summary:

In this study, the authors distinguished afferent inputs to different cell populations in the VTA using dimensionality reduction approaches and found significantly distinct patterns between normal and drug treatment conditions. They also demonstrated negative correlations of the inputs induced by drugs with gene expression of ion channels or proteins involved in synaptic transmission and demonstrated the knockdown of one of the voltage-gated calcium ion channels caused decreased inputs.

Weaknesses:

(1) For quantifications of brain regions in this study, boundaries were based on the Franklin-Paxinos (FP) atlas according to previous studies (Beier KT et al 2015, Beier KT et al 2019). It has been reported significant discrepancies exist between the anatomical labels on the FP atlas and the Allen Brain Atlas (ref: Chon U et al., Nat Commun 2019). Although a summary of conversion is provided as a sheet, the authors need to describe how consistent or different the brain boundaries they defined in the manuscript with Allen Brain Atlas by adding histology images. Also, I wonder how reliable the annotations were for over a hundred of animals with manual quantification. The authors should briefly explain it rather than citing previous studies in the Material and Methods Section.

(2) Regarding the ellipsoids in the PC, although it's written in the manuscript that "Ellipsoids were centered at the average coordinate of a condition and stretched one standard deviation along the primary and secondary axes", it's intuitively hard to understand in some figures such as Figure 2O, P and Figure S1. The authors need to make their data analysis methods more accessible by providing source code to the public.

(3) In histology images (Figure 1B and 3K), the authors need to add dashed lines or arrows to guide the reader's attention.

(4) In Figure 2A and G, apparently there are significant differences in other brain regions such as NAcMed or PBN. If they are also statistically significant, the authors should note them as well and draw asterisks(*).

(5) In Figure 2N about the spatial distribution of starter cells, the authors need to add histology images for each experimental condition (i.e. saline, fluoxetine, cocaine, methamphetamine, amphetamine, nicotine, and morphine) as supplement figures.

(6) In the manuscript, it is necessary to explain why Cacna1e was selected among other calcium ion channels.

Reviewer #2 (Public Review):

The application of rabies virus (RabV)-mediated transsynaptic tracing has been widely utilized for mapping cell-type-specific neural connectivities and examining potential modifications in response to biological phenomena or pharmacological interventions. Despite the predominant focus of studies on quantifying and analyzing labeling patterns within individual brain regions based on labeling abundance, such an approach may inadvertently overlook systemic alterations. There exists a considerable opportunity to integrate RabV tracing data with the global connectivity patterns and the transcriptomic signatures of labeled brain regions. In the present study, the authors take an important step towards achieving these objectives.

Specifically, the authors conducted an intensive reanalysis of a previously generated large dataset of RabV tracing to the ventral tegmental area (VTA) using dimension reduction methods such as PCA and UMPA. This reaffirmed the authors's earlier conclusion that different cell types in the VTA, namely dopamine neurons (DA) and GABAergic neurons, exhibit quantitatively distinct input patterns, and a single dose of addictive drugs, such as cocaine and morphine, induced altered labeling patterns. Additionally, the authors illustrate that distinct axes of PCA can discriminate experimental variations, such as minor differences in the injection site of viral tracers, from bona fide alternations in labeling patterns caused by drugs of abuse. While the specific mechanisms underlying altered labeling in most brain regions remain unclear, whether involving synaptic strength, synaptic numbers, pre-synaptic activities, or other factors, the present study underscores the efficacy of an informatics approach in extracting more comprehensive information from the RabV-based circuit mapping data.

Moreover, the authors showcased the utility of their previously devised bulk gene expression patterns inferred by the Allen Gene Expression Atlas (AGEA) and "projection portrait" derived from bulk axon mapping data sourced from the Allen Mouse Brain Connectivity Atlas. The utilization of such bulk data rests upon several limitations. For instance, the collection of axon mapping data involves an arbitrary selection of both cell type-specific and non-specific data, which might overlook crucial presynaptic partners, and often includes contamination from neighboring undesired brain regions. Concerns arise regarding the quantitativeness of AGEA, which may also include the potential oversight of key presynaptic partners. Nevertheless, the authors conscientiously acknowledged these potential limitations associated with the dataset.

Notably, building on the observation of a positive correlation between the basal expression levels of Ca2+ channels and the extent of drug-induced changes in RabV labeling patterns, the authors conducted a CRISPRi-based knockdown of a single Ca2+ channel gene. This intervention resulted in a reduction of RabV labeling, supporting that the observed gene expression patterns have causality in RabV labeling efficiency. While a more nuanced discussion is necessary for interpreting this result (see below), overall I commend the authors for their efforts to leverage the existing dataset in a more meaningful way. This endeavor has the potential to contribute significantly to our understanding of the mechanisms underlying alterations in RabV labeling induced by drugs of abuse.

Finally, drawing upon the aforementioned reanalysis of previous data, the authors underscored that a single administration of ketamine/xylazine anesthesia could induce enduring modifications in RabV labeling patterns for VTA DA neurons, specifically those projecting to the nucleus accumbens and amygdala. Given the potential impact of such alterations on motivational behaviors at a broader level, I fully agree that prudent consideration is warranted when employing ketamine/xylazine for the investigation of motivational behaviors in mice.

Specific Points:

(1) Beyond advancements in bioinformatics, readers may find it insightful to explore whether the PCA/UMPA-based approach yields novel biological insights. For example, the authors are encouraged to discuss more functional implications of PBN and LH in the context of drugs of abuse, as their labeling abundance could elucidate the PC2 axis in Fig. 2M.

  1. While I appreciate the experimental data on Cacna1e knockdown, I am unclear about the rationale behind specifically focusing on Cacna1e. The logic behind the statement, "This means that expression of this gene is not inhibitory towards RABV transmission," is also unclear. Loss-of-function experiments only signify the necessity or permissive functions of a gene. In this context, Cacna1e expression levels are required for efficient RabV labeling, but this neither supports nor excludes the possibility that this gene expression instructively suppresses RabV labeling/transmission, which could be assessed through gain-of-function experiments.

Reviewer #3 (Public Review):

Summary:

Authors mapped monosynaptic inputs to dopamine, GABA, and glutamate neurons in VTA under different anesthesia methods, and under drugs (cocaine, morphine, methamphetamine, amphetamine, nicotine, fluoxetine). They found that input patterns under different conditions are separated, and identified some key brain areas to contribute to such separation. They also searched a database for gene expression patterns that are common across input brain areas with some changes by anesthesia or drug administration.

Strengths:

The whole-brain approach to address drug effects is appealing and their conclusion is clear. The methodology and motivation are clearly explained.

Weaknesses:

While gene expression analyses may not be related to their findings on the anatomical effects of drugs, this will be a nice starting point for follow-up studies.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation