Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorYongliang YangDalian University of Technology, Dalian, China
- Senior EditorCaigang LiuShengjing Hospital of China Medical University, Shenyang, China
Reviewer #1 (Public Review):
Summary:
The authors employed a combinatorial CRISPR-Cas9 knockout screen to uncover synthetically lethal kinase genes that could play a role in drug resistance to kinase inhibitors in triple-negative breast cancer. The study successfully reveals FYN as a mediator of resistance to depletion and inhibition of various tyrosine kinases, notably EGFR, IGF-1R, and ABL, in triple-negative breast cancer cells and xenografts. Mechanistically, they demonstrate that KDM4 contributes to the upregulation of FYN and thereby is an important mediator of drug resistance. All together, these findings suggest FYN and KDM4A as potential targets for combination therapy with kinase inhibitors in triple-negative breast cancer. Moreover, the study may also have important implications for other cancer types and other inhibitors, as the authors suggest that FYN could be a general feature of drug-tolerant persister cells.
Strengths:
(1) The authors used a large combination matrix of druggable tyrosine kinase gene knockouts, enabling studying of co-dependence of kinase genes. This approach mitigates off-target effects typically associated with kinase inhibitors, enhancing the precision of the findings.
(2) The authors demonstrate the importance of FYN in drug resistance in multiple ways. They demonstrate synergistic interactions using both knockouts and inhibitors, while also revealing its transcriptional upregulation upon treatment, strengthening the conclusion that FYN plays a role in the resistance.
(3) The study extends its impact by demonstrating the potent in vivo efficacy of certain combination treatments, underscoring the clinical relevance of the identified strategies.
Weaknesses:
(1) The methods and figure legends are incomplete, posing a barrier to the reproducibility of the study and hindering a comprehensive understanding and accurate interpretation of the results.
(2) The authors make use of a large quantity of public data (Fig. 2D/E, Fig. 3F/L/M, Fig 4C, Fig 5B/H/I), whereas it would have strengthened the paper to perform these experiments themselves. While some of this data would be hard to generate (e.g. patient data) other data could have been generated by the authors. The disadvantage of the use of public data is that it merely comprises associations, but does not have causal/functional results (e.g. FYN inhibition in the different cancer models with various drugs). Moreover, by cherry-picking the data from public sources, the context of these sources is not clear to the reader, and thus harder to interpret correctly. For example, it is not directly clear whether the upregulation of FYN in these models is a very selective event or whether it is part of a very large epigenetic re-programming, where other genes may be more critical. While some of the used data are from well-known curated databases, others are from individual papers that the reader should assess critically in order to interpret the data. Sometimes the public data was redundant, as the authors did do the experiments themselves (e.g. lung cancer drug-tolerant persisters), in this case, the public data could also be left out.
More importantly, the original sources are not properly cited. While the GEO accession numbers are shown in a supplementary table, the articles corresponding to this data should be cited in the main text, and preferably also in the figure legend, to clarify that this data is from public sources, which is now not always the case (e.g. line 224-226). If these original papers do already mention the upregulation of FYN, and the findings from the authors are thus not original, these findings should be discussed in the Discussion section instead of shown in the Results.
(3) The claim in the abstract (and discussion) that the study "highlights FYN as broadly applicable mediator of therapy resistance and persistence", is not sufficiently supported by the results. The current study only shows functional evidence for this for an EGFR, IGF1R, and Abl inhibitor in TNBC cells. Further, it demonstrates (to a limited extent) the role of FYN in gefitinib and osimertinib resistance (also EGFR inhibitors) in lung cancer cells. Thus, the causal evidence provided is only limited to a select subset of tyrosine kinase inhibitors in two cancer types. While the authors show associations between FYN and drug resistance in other cancer types and after other treatments, these associations are not solid evidence for a causal connection as mentioned in this statement. Epigenetic reprogramming causing drug resistance can be accompanied by altered gene expression of many genes, and the upregulation of FYN may be a consequence, but not a cause of the drug resistance. Therefore, the authors should be more cautious in making such statements about the broad applicability of FYN as a mediator of therapy resistance.
(4) The rationale for picking and validating FYN as the main candidate gene over other genes such as FGFR2, FRK2, and TEK is not clear.
a. While gene pairs containing FGFR2 knockouts seemed to be equally effective as FYN gene pairs in the primary screening, these could not be validated in the validation experiment. It is unclear whether multiple individual or a pool of gRNAs were used for this validation, or whether only 1 gRNA sequence was picked per gene for this validation. If only 1 gRNA per gene was used, this likely would have resulted in variable knockout efficiencies. Moreover, the T7 endonuclease assay may not have been the best method to check knockout efficiency, as it only implies endonuclease activity around a gene (but not to the extent of indels that can cause frameshifts, such as by TIDE analysis, or extent of reduction in protein levels by western blot).
b. Moreover, FRK2 and TEK, also demonstrated many synergistic gene pairs in the primary screen. However, many of these gene pairs were not included in the validation screening. The selection criteria of candidate gene pairs for validation screening is not clear. Still, TEK-ABL2 was also validated as a strong hit in the validation screen. The authors should better explain the choice of FYN over other hits, and/or mention that TEK and FRK2 may also be important targets for combination treatment that can be further elucidated.
(5) On several occasions, the right controls (individual treatments, performed in parallel) are not included in the figures. The authors should include the responses to each of the single treatments, and/or better explain the normalization that might explain why the controls are not shown.
a. Figure 2G: The effect of PP2 treatment, without combined treatment, is not shown.
b. Figure 2H/3G: The effect of the knockouts on growth alone, compared to sgGFP, is not demonstrated. It is unclear whether the viability of knockouts is normalized to sgGFP, or to each untreated knockout.
c. Figure 2L: The effect of SB203580 as a single treatment is not shown.
(6) The study examines the effects at a single, relatively late time point after treatment with inhibitors, without confirming the sequential impact on KDM4A and FYN. The proposed sequence of transcriptional upregulation of KDM4A followed by epigenetic modifications leading to FYN upregulation would be more compellingly supported by demonstrating a consecutive, rather than simultaneous, occurrence of these events. Furthermore, the protein level assessment at 48 hours (for RNA levels not clearly described), raises concerns about potential confounding factors. At this late time point, reduced cell viability due to the combination treatment could contribute to observed effects such as altered FYN expression and P38 MAPK phosphorylation, making it challenging to attribute these changes solely to the specific and selective reduction of FYN expression by KDM4A.
(7) The cut-off for considering interactions "synergistic" is quite low. The manual of the used "SynergyFinder" tool itself recommends values above >10 as synergistic and between -10 and 10 as additive (https://synergyfinder.fimm.fi/synergy/synfin_docs/). Here, values between 5-10 are also considered synergistic. Caution should be taken when discussing those results. Showing the actual dose response (including responses to each single treatment) may be required to enable the reader to critically assess the synergy, along with its standard deviation.
(8) As the effect size on Western blots is quite limited and sometimes accompanied by differences in loading control, these data should be further supported by quantifications of signal intensities of at least 3 biological replicates (e.g. especially Figure 3A/5A). The figure legends should also state how many independent experiments the blots are representative of.
(9) While the article provides mechanistic insights into the likely upregulation of FYN by KDM4A, this constitutes only a fragment of the broader mechanism underlying drug resistance associated with FYN. The study falls short in investigating the causes of KDM4A upregulation and fails to explore the downstream effects (except for p38 MAPK phosphorylation, which may not be complete) of FYN upregulation that could potentially drive sustained cell proliferation and survival. These omissions limit the comprehensive understanding of the complete molecular pathway, and the discussion section does not address potential implications or pathways beyond the identified KDM4A-FYN axis. A more thorough exploration of these aspects would enhance the study's contribution to the field.
(10) FYN has been implied in drug resistance previously, and other mechanisms of its upregulation, as well as downstream consequences, have been described previously. These were not evaluated in this paper, and are also not discussed in the discussion section. Moreover, the authors did not investigate whether any of the many other mechanisms of drug resistance to EGFR, IGF1R, and Abl inhibitors that have been described, could be related to FYN as well. A more comprehensive examination of existing literature and consideration of alternative or parallel mechanisms in the discussion would enhance the paper's contribution to understanding FYN's involvement in drug resistance.
Reviewer #2 (Public Review):
Summary:
Kim et al. conducted a study in which they selected 76 tyrosine kinases and performed CRISPR/Cas9 combinatorial screening to target 3003 genes in Triple-negative breast cancer (TNBC) cells. Their investigation revealed a significant correlation between the FYN gene and the proliferation and death of breast cancer cells. The authors demonstrated that depleting FYN and using FYN inhibitors, in combination with TKIs, synergistically suppressed the growth of breast cancer tumor cells. They observed that TKIs upregulate the levels of FYN and the histone demethylase family, particularly KDM4, promoting FYN expression. The authors further showed that KDM4 weakens the H3K9me3 mark in the FYN enhancer region, and the inhibitor QC6352 effectively inhibits this process, leading to a synergistic induction of apoptosis in breast cancer cells along with TKIs. Additionally, the authors discovered that FYN is upregulated in various drug-resistant cancer cells, and inhibitors targeting FYN, such as PP2, sensitize drug-resistant cells to EGFR inhibitors.
Strengths:
This study provides new insights into the roles and mechanisms of FYN and KDM4 in tumor cell resistance.
Weaknesses:
It is important to note that previous studies have also implicated FYN as a potential key factor in drug resistance of tumor cells, including breast cancer cells. While the current study is comprehensive and provides a rich dataset, certain experiments could be refined, and the logical structure could be more rigorous. For instance, the rationale behind selecting FYN, KDM4, and KDM4A as the focus of the study could be more thoroughly justified.