Population analyses reveal heterogenous encoding in the medial prefrontal cortex during naturalistic foraging

  1. School of Psychology, Korea University

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Naoshige Uchida
    Harvard University, Cambridge, United States of America
  • Senior Editor
    Michael Frank
    Brown University, Providence, United States of America

Reviewer #1 (Public Review):

Summary:

In this study, Jeong and Choi examine neural correlates of behavior during a naturalistic foraging task in which rats must dynamically balance resource acquisition with the risk of threat. Rats first learn to forage for sucrose reward from a spout, and when a threat is introduced (an attack-like movement from a "LobsterBot"), they adjust their behavior to continue foraging while balancing exposure to the threat, adopting anticipatory withdrawal behaviors to avoid encounter with the LobsterBot. Using electrode recordings targeting the medial prefrontal cortex (PFC), they identify heterogenous encoding of task variables across prelimbic and infralimbic cortex neurons, including correlates of distance to the reward/threat zone, and correlates of avoidance behavior. Based on analysis of population responses, they suggest that the prefrontal cortex switches between coding schemes to process spatial information or behavioral responses in a context-dependent manner. Characterization of the heterogenous coding scheme by which the frontal cortex represents information in different goal states is an important contribution to our understanding of brain mechanisms underlying flexible behavior in ecological settings.

Strengths:

As many behavioral neuroscience studies employ highly controlled task designs, relatively less is known about how the brain organizes navigation and behavioral selection in naturalistic settings, where environment states and goals are more fluid. Here, the authors take advantage of a natural challenge faced by many animals - how to forage for resources in an unpredictable environment - to investigate neural correlates of behavior when goal states are dynamic. Related to this, they also investigate how prefrontal cortex (PFC) activity can reorganize to support different functional "modes" (here, between a navigational mode and an action-selection mode) for flexible behavior. Overall, an important strength and real value of this study is the design of the behavioral experiment, which is trial-structured, permitting the use of standard methods to analyze neural data, yet rich enough to encourage and permit more natural behavior. The experiment is also phased to measure behavioral changes as animals first encounter a threat, and then learn to adapt their foraging strategy to its presence. Characterization of this adaptation process is itself quite interesting and sets a foundation for further study of threat learning and risk management in the foraging context. Finally, the characterization of single-neuron activity from the prefrontal cortex in this naturalistic setting is an important contribution to the field - previous studies have identified the neural correlates of spatial and behavioral variables in the frontal cortex, but the nature of how these representations co-exist or are dynamically adjusted when animals shift their goals is less clear.

Weaknesses:

While the task design in this study is intentionally stimulus-rich and places a minimal constraint on the animal to preserve naturalistic behavior, this is, unfortunately, a double-edged sword, as it also introduces additional variables that confound some of the neural analysis. Because of this, a general weakness of the study is a lack of clear interpretability of the task variable neural correlates. This is a limitation of the task, which includes many naturally correlated variables - however, I think with some additional analyses, the authors could strengthen some of their core arguments and significantly improve clarity.

For example, the authors argue, based on an ANN decoding analysis (Figure 2b), that PFC neurons encode spatial information - but the spatial coordinate that they decode (the distance to the active foraging zone) is itself confounded by the fact that animals exhibit different behavior in different sections of the arena. From the way the data are presented, it is difficult to tell whether the decoder performance reflects a true neural correlate of distance, or whether it is driven by behavior-associated activity that is evoked by different behaviors in different parts of the arena. The author's claim that PFC neurons encode spatial information could be substantiated with a more careful analysis of single-neuron responses to supplement the decoder analysis. For example, 1) They could show examples of single neurons that are active at some constant distance away from the foraging site, regardless of animal behavior, and 2) They could quantify how many neurons are significantly spatially modulated, controlling for correlates of behavior events. One possible approach to disambiguate this confound could be to use regression-based models of neuron spiking to quantify variance in neuron activity that is explained by spatial features, behavioral features, or both.

The authors also claim that the heterogenous encoding of spatial and behavioral variables in PFC neurons is structured in a particular way that depends on the animal's goal state and/or context (a navigational mode and an action-selection mode). The main evidence supporting this interpretation is a population vector analysis based on principal component projections of neural data (Figure 4), which shows that the population response is different, on average, in the encounter zone compared to the foraging and nesting zones. But again, the different "zones" are obligately correlated with different types of behavior/stimuli. Since some neurons are modulated by events unique to the encounter zone (e.g., licking sucrose water, withdrawing from the LobsterBot, etc.), differences in population activity patterns may simply reflect this behavior/event coding. To substantiate the claim that PFC neurons really switch between different coding "modes," the authors could include a version of this analysis where they have regressed out, or otherwise controlled for, these confounds. Otherwise, the claim that the authors have identified "distinctively different states of ensemble activity," as opposed to simple coding of salient task features, seems premature.

Reviewer #2 (Public Review):

Summary:

Jeong & Choi (2023) use a semi-naturalistic paradigm to tackle the question of how the activity of neurons in the mPFC might continuously encode different functions. They offer two possibilities: either there are separate dedicated populations encoding each function, or cells alter their activity depending on the current goal of the animal. In a threat-avoidance task rats procured sucrose in an area of a chamber where, after remaining there for some amount of time, a 'Lobsterbot' robot attacked. To initiate the next trial rats had to move through the arena to another area before returning to the robot encounter zone. Therefore the task has two key components: threat avoidance and navigating through space. Recordings in the IL and PL of the mPFC revealed encoding that depended on what stage of the task the animal was currently engaged in. When animals were navigating, neuronal ensembles in these regions encoded distance from the threat. However, whilst animals were directly engaged with the threat and simultaneously consuming reward, it was possible to decode from a subset of the population whether animals would evade the threat. Therefore the authors claim that neurons in the mPFC switched between two functional modes: representing allocentric spatial information, and representing egocentric information pertaining to the reward and threat.

Strengths:

As the authors point out, whilst these multiple functions of activity in the mPFC have generally been observed in tasks dedicated to the study of a singular function, less work has been done in contexts where animals continuously switch between different modes of behaviour in a more natural way. Being able to assess whether previous findings of mPFC function apply in natural contexts is very valuable to the field, even outside of those interested in the mPFC directly. This also speaks to the novelty of the work; although mixed selectivity encoding of threat assessment and action selection has been demonstrated in some contexts (e.g. Grunfeld & Likhtik, 2018) understanding the way in which encoding changes on-the-fly in a self-paced task is valuable for verifying whether current understanding holds true.

The authors are also generally thoughtful in their analyses and use a variety of approaches to probe the information encoded in the recorded activity. In particular, they also use relatively close analysis of behaviour as well as manipulating the task itself by removing the threat to verify their own results. The use of such a rich task also allows them to draw comparisons, e.g. in different zones of the arena or different types of responses to threats, that a more reduced task would not otherwise allow.

Weaknesses:

The central question the paper seeks to answer is whether 'individual cells are dedicated to spatial representation and emotional stimuli processing or if they adapt their function to the current goal'. However, there does not seem to be a direct analysis that answers this question. It is not clear what proportion of each of the ensembles recorded is necessary for decoding distance from the threat, and whether it is these same neurons that directly 'switch' to responding to head entry or withdrawal in the encounter phase within the total population. The PCA gets closest to answering this question by demonstrating that activity during the encounter is different from activity in the nesting or foraging zones, but in principle this could be achieved by neurons or ensembles that did not encode spatial parameters. The population analyses are focused on neurons sensitive to behaviours relating to the threat encounter, but even before dividing into subtypes etc., this is at most half of the recorded population. And again it is difficult to ascertain how the final ensemble analysis of the avoidance response relates to the prior spatial encoding. As a result, the model of the results proposed in Fig. 7 cannot be validated by the data as is.

A second concern is also illustrated by Fig. 7: in the data presented, separate reward and threat encoding neurons were not shown - in the current study design, it is not possible to dissociate reward and threat responses as the data without the threat present were only used to study spatial encoding integrity. To be able to claim this working model, a key additional analysis is to compare PETHs around head entry and withdrawal for sucrose without attack. Alternatively, a small proportion of probe trials could have been added where rats did not receive any reward for being in the encounter zone. This would allow the authors to ascertain whether the elevated response of the Type 2 neurons in particular is partially driven by reward receipt.

Thirdly, the findings of this work are not mechanistic or functional but are purely correlational. For example, it is claimed that analysing activity around the withdrawal period allows for ascertaining their functional contributions to decisions. But without a direct manipulation of this activity, it is difficult to make such a claim. The authors later discuss whether the elevated response of Type 2 neurons might simply represent fear or anxiety motivation or threat level, or whether they directly contribute to the decision-making process. As is implicit in the discussion, the current study cannot differentiate between these possibilities. However, the language used throughout does not reflect this.

Fourthly, the authors mention the representation of different functions in 'distinct spatiotemporal regions' but the bulk of the analyses, particularly in terms of response to the threat, do not compare recordings from PL and IL although - as the authors mention in the introduction - there is prior evidence of functional separation between these regions.

Reviewer #3 (Public Review):

Summary:

This study investigates how various behavioral features are represented in the medial prefrontal cortex (mPFC) of rats engaged in a naturalistic foraging task. The authors recorded electrophysiological responses of individual neurons as animals transitioned between navigation, reward consumption, avoidance, and escape behaviors. Employing a range of computational and statistical methods, including artificial neural networks, dimensionality reduction, hierarchical clustering, and Bayesian classifiers, the authors sought to predict from neural activity distinct task variables (such as distance from the reward zone and the success or failure of avoidance behavior). The findings suggest that mPFC neurons alternate between at least two distinct functional modes, namely spatial encoding and threat evaluation, contingent on the specific location.

Strengths:

This study attempts to address an important question: understanding the role of mPFC across multiple dynamic behaviors. The authors highlight the diverse roles attributed to mPFC in previous literature and seek to explain this apparent heterogeneity. They designed an ethologically relevant foraging task that facilitated the examination of complex dynamic behavior, collecting comprehensive behavioral and neural data. The analyses conducted are both sound and rigorous.

Weaknesses:

The primary concern with this study is the absence of direct evidence regarding the role of the mPFC in the foraging behavior of the rats. The ability to predict heterogeneous variables from the population activity of a specific brain area does not necessarily imply that this brain area is computing or using this information. In light of recent reports revealing the distributed nature of neural coding, conducting direct causal experiments would be essential to draw conclusions about the role of the mPFC in spatial encoding and/or threat evaluation. Alternatively, a comparison with the activity from a different brain region could provide valuable insights (or at the very least, a comparison between PL and IL within the mPFC). Moreover, given that high-dimensional movement has been shown to be reflected in the neural activity across the entire dorsal cortex, more thorough comparisons between the neural encoding of task variables and movement would help rule out the possibility that the heterogeneous encoding observed in the mPFC is merely a reflection of the rats' movements in different behavioral modes. Lastly, the main claim of the paper is that the mPFC population switches between different functional modes depending on the context. However, no dynamic analysis or switching model has been employed to directly support this hypothesis.

Conclusion:

To strengthen the argument and offer novel insights into the functions of the mPFC, it would be important to conduct a more comprehensive analysis if additional data cannot be provided.

Author Response

We strongly agree with not all but some of the comments made by the reviewers.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation