Expanding the Drosophila toolkit for dual control of gene expression

  1. Dept of Genetics, Harvard Medical School, Boston, MA
  2. Dept of Physiology and Biophysics, University of California, Irvine, CA
  3. Howard Hughes Medical Institute, Boston, MA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Claude Desplan
    New York University, New York, United States of America
  • Senior Editor
    Claude Desplan
    New York University, New York, United States of America

Reviewer #1 (Public Review):

Summary:
"Expanding the Drosophila toolkit for dual control of gene expression" by Zirin et al. aims to develop resources for simultaneous independent manipulation of multiple genes in Drosophila. The authors use CRISPR knock-ins to establish a collection of T2A-LexA and T2A-QF2 transgenes with expression patterns in a number of commonly studied organs and tissues. In addition to the transgenic lines that are established, the authors describe a number of plasmids that can be used to generate additional transgenes, including a plasmid to generate a dual insert of LexA and QF that can be resolved into a single insert using FLP/FRT-mediated recombination, and plasmids to generate RNAi reagents for the LexA and QF systems. Finally, the authors demonstrate that a subset of the LexA and QF lines that they generated can induce RNAi phenotypes when paired with LexAop or QUAS shRNA lines. In general, the claims of the paper are well supported by the evidence and the authors do a thorough job of validating the transgenic lines and characterizing their expression patterns.

Strengths:
-Numerous Gal4 lines allow for highly specific genetic manipulation in a wide range of organs and tissues, however, similar tissue-specific drivers using alternative binary expression systems are not currently well developed. This study provides a large number of tissue and organ-specific LexA and QF2 driver lines that should be broadly useful for the Drosophila community.
-While a minority of the driver lines do not express the expected pattern (likely due to cryptic regulatory elements in the LexA or QF2 sequences), the ability to generate drivers using two different Gal4 alternatives mitigates this issue (as in nearly all cases at least one of the two systems produces a clean driver line with the expected expression pattern).
-The use of LexA-GAD provides an additional degree of control as it is subject to Gal80 repression. This could prove to be particularly useful in cases where a researcher wishes to manipulate multiple genes using Gal4 and LexA-GAD drivers as the Gal80(ts) system could be used for simultaneous temporal control of both constructs.
-The use of Fly Cell Atlas information to generate novel oenocyte-specific driver lines provides a useful proof-of-concept for constructing additional highly tissue-specific drivers.

Weaknesses:
-Since these reagents will most commonly be paired with existing Gal4 lines, adding information about corresponding Gal4 lines targeting these tissues and how faithfully the LexA and QF2 lines recapitulate these Gal4 patterns would be highly beneficial.
-It is not stated in the manuscript if these transgenic lines and plasmids are currently publicly available. Information about how to obtain these reagents through Bloomington, Addgene, or TRiP should be added to the manuscript.

Reviewer #2 (Public Review):

Zirin, Jusiak, and Lopes et al presented an efficient pipeline for making LexA-GAD and QF2 drivers. The tools can be combined with a large collection of existing GAL4 drivers for a dual genetic control of two cell populations. This is essential when studying inter-organ communications since most of the current genetic drivers are biased toward the expression of the central nervous system. In this manuscript, the authors described the methodology for efficiently generating T2A-LexA-GAD and T2A-QF2 knock-ins by CRISPR, targeting a number of genes with known tissue-specific expression patterns. The authors then validated and compared the expression of double as well as single drivers and found the tissue-specific expression results were largely consistent as expected. Finally, a collection of plasmids for LexA-GAD and QF,2 as well as the corresponding LexAop and QUAS plasmids were generated to facilitate the expansion of these tool kits. In general, this study will be of considerable interest to the fly community and the resources can be readily generalized to make drivers for other genes. I believe this toolkit will have a significant, immediate impact on the fly community.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation