Novel Mechanism for Tubular Injury in Nephropathic Cystinosis

  1. Division of Multi-Organ Transplantation, Department of Surgery, University of California, San Francisco
  2. Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Benoit Kornmann
    University of Oxford, Oxford, United Kingdom
  • Senior Editor
    Benoit Kornmann
    University of Oxford, Oxford, United Kingdom

Reviewer #1 (Public Review):

Cystinosis is a rare hereditary disease caused by biallelic loss of the CTNS gene, encoding two cystinosin protein isoforms; the main isoform is expressed in lysosomal membranes where it mediates cystine efflux whereas the minor isoform is expressed at the plasma membrane and in other subcellular organelles. Sur et al proceed from the assumption that the pathways driving the cystinosis phenotype in the kidney might be identified by comparing the transcriptome profiles of normal vs CTNS-mutant proximal tubular cell lines. They argue that key transcriptional disturbances in mutant kidney cells might not be present in non-renal cells such as CTNS-mutant fibroblasts.

Using cluster analysis of the transcriptomes, the authors selected a single vacuolar H+ATPase (ATP6VOA1) for further study, asserting that it was the "most significantly downregulated" vacuolar H+ATPase (about 58% of control) among a group of similarly downregulated H+ATPases. They then showed that exogenous ATP6VOA1 improved CTNS(-/-) RPTEC mitochondrial respiratory chain function and decreased autophagosome LC3-II accumulation, characteristic of cystinosis. The authors then treated mutant RPTECs with 3 "antioxidant" drugs, cysteamine, vitamin E, and astaxanthin (ATX). ATX (but not the other two antioxidant drugs) appeared to improve ATP6VOA1 expression, LC3-II accumulation, and mitochondrial membrane potential. Respiratory chain function was not studied. RTPC cystine accumulation was not studied.

The major strengths of this manuscript reside in its two primary findings.
(1) Plasmid expression of exogenous ATP6VOA1 improves mitochondrial integrity and reduces aberrant autophagosome accumulation.
(2) Astaxanthin partially restores suboptimal endogenous ATP6VOA1 expression.

Taken together, these observations suggest that astaxanthin might constitute a novel therapeutic strategy to ameliorate defective mitochondrial function and lysosomal clearance of autophagosomes in the cystinotic kidney. This might act synergistically with the current therapy (oral cysteamine) which facilitates defective cystine efflux from the lysosome.

There are, however, several weaknesses in the manuscript.
(1) The reductive approach that led from transcriptional profiling to focus on ATP6VOA1 is not transparent and weakens the argument that potential therapies should focus on correction of this one molecule vs the other H+ ATPase transcripts that were equally reduced - or transcripts among the 1925 belonging to at least 11 pathways disturbed in mutant RPTECs.
(2) A precise description of primary results is missing -- the Results section is preceded by or mixed with extensive speculation. This makes it difficult to dissect valid conclusions from those derived from less informative experiments (eg data on CDME loading, data on whole-cell pH instead of lysosomal pH, etc).
(3) Data on experimental approaches that turned out to be uninformative (eg CDME loading, or data on whole=cell pH assessment with BCECF).
(4) The rationale for the study of ATX is unclear and the mechanism by which it improves mitochondrial integrity and autophagosome accumulation is not explored (but does not appear to depend on its anti-oxidant properties).
(5) Thoughtful discussion on the lack of effect of ATP6VOA1 correction on cystine efflux from the lysosome is warranted, since this is presumably sensitive to intralysosomal pH.
(6) Comparisons between RPTECs and fibroblasts cannot take into account the effects of immortalization on cell phenotype (not performed in fibroblasts).

This work will be of interest to the research community but is self-described as a pilot study. It remains to be clarified whether transient transfection of RPTECs with other H+ATPases could achieve results comparable to ATP6VOA1. Some insight into the mechanism by which ATX exerts its effects on RPTECs is needed to understand its potential for the treatment of cystinosis.

Reviewer #2 (Public Review):

Sur and colleagues investigate the role of ATP6V0A1 in mitochondrial function in cystinotic proximal tubule cells. They propose that loss of cystinosin downregulates ATP6V0A1 resulting in acidic lysosomal pH loss, and adversely modulates mitochondrial function and lifespan in cystinotic RPTECs. They further investigate the use of a novel therapeutic Astaxanthin (ATX) to upregulate ATP6V0A1 that may improve mitochondrial function in cystinotic proximal tubules.

The new information regarding the specific proximal tubular injuries in cystinosis identifies potential molecular targets for treatment. As such, the authors are advancing the field in an experimental model for potential translational application to humans.

Author response:

eLife assessment

This important study addresses the idea that defective lysosomal clearance might be causal to renal dysfunction in cystinosis. They observe that restoring expression of vATPase subunits and treatment with Astaxanthin ameliorate mitochondrial function in a model of renal epithelial cells, opening opportunities for translational application to humans. The data are convincing, but the description of methodologies is incomplete.

Public Reviews:

Reviewer #1 (Public Review):

Cystinosis is a rare hereditary disease caused by biallelic loss of the CTNS gene, encoding two cystinosin protein isoforms; the main isoform is expressed in lysosomal membranes where it mediates cystine efflux whereas the minor isoform is expressed at the plasma membrane and in other subcellular organelles. Sur et al proceed from the assumption that the pathways driving the cystinosis phenotype in the kidney might be identified by comparing the transcriptome profiles of normal vs CTNS-mutant proximal tubular cell lines. They argue that key transcriptional disturbances in mutant kidney cells might not be present in non-renal cells such as CTNS-mutant fibroblasts.

Using cluster analysis of the transcriptomes, the authors selected a single vacuolar H+ATPase (ATP6VOA1) for further study, asserting that it was the "most significantly downregulated" vacuolar H+ATPase (about 58% of control) among a group of similarly downregulated H+ATPases. They then showed that exogenous ATP6VOA1 improved CTNS(-/-) RPTEC mitochondrial respiratory chain function and decreased autophagosome LC3-II accumulation, characteristic of cystinosis. The authors then treated mutant RPTECs with 3 "antioxidant" drugs, cysteamine, vitamin E, and astaxanthin (ATX). ATX (but not the other two antioxidant drugs) appeared to improve ATP6VOA1 expression, LC3-II accumulation, and mitochondrial membrane potential. Respiratory chain function was not studied. RTPC cystine accumulation was not studied.

In this manuscript, as an initial step, we have studied the first step in respiratory chain function by performing the Seahorse Mito Stress Test to demonstrate that the genetic manipulation (knocking out the CTNS gene and plasmid-mediated expression correction of ATP6V0A1) impacts mitochondrial energetics. We did not investigate the respirometry-based assays that can identify locations of electron transport deficiency, which we plan to address in a follow-up paper.

We would like to draw attention to Figure 3D, where cystine accumulation has been studied. This figure demonstrates an increased intracellular accumulation of cystine.

The major strengths of this manuscript reside in its two primary findings.

(1) Plasmid expression of exogenous ATP6VOA1 improves mitochondrial integrity and reduces aberrant autophagosome accumulation.

(2) Astaxanthin partially restores suboptimal endogenous ATP6VOA1 expression.

Taken together, these observations suggest that astaxanthin might constitute a novel therapeutic strategy to ameliorate defective mitochondrial function and lysosomal clearance of autophagosomes in the cystinotic kidney. This might act synergistically with the current therapy (oral cysteamine) which facilitates defective cystine efflux from the lysosome.

There are, however, several weaknesses in the manuscript.

(1) The reductive approach that led from transcriptional profiling to focus on ATP6VOA1 is not transparent and weakens the argument that potential therapies should focus on correction of this one molecule vs the other H+ ATPase transcripts that were equally reduced - or transcripts among the 1925 belonging to at least 11 pathways disturbed in mutant RPTECs.

The transcriptional profiling studies on ATP6V0A1 have been fully discussed and publicly shared. Table 2 lists the v-ATPase transcripts that are significantly downregulated in cystinosis RPTECs. We have also clarified and justified the choice of further studies on ATP6V0A1, where we state the following: "The most significantly perturbed member of the V-ATPase gene family found to be downregulated in cystinosis RPTECs is ATP6V0A1 (Table 2). Therefore, further attention was focused on characterizing the role of this particular gene in a human in vitro model of cystinosis."

(2) A precise description of primary results is missing -- the Results section is preceded by or mixed with extensive speculation. This makes it difficult to dissect valid conclusions from those derived from less informative experiments (eg data on CDME loading, data on whole-cell pH instead of lysosomal pH, etc).

We appreciate the reviewer highlighting areas for further improving the manuscript's readership. In our resubmission, we have revised the results section to provide a more precise description of the primary findings and restrict the inferences to the discussion section only.

(3) Data on experimental approaches that turned out to be uninformative (eg CDME loading, or data on whole=cell pH assessment with BCECF).

We have provided data whether it was informative or uninformative. Though lysosome-specific pH measurement would be important to measure, it was not possible to do it in our cells as they were very sick and the assay did not work. Hence we provide data on pH assessment with BCECF, which measures overall cytoplasmic and organelle pH, which is also informative for whole cell pH that is an overall pH of organelle pH and cytoplasmic pH.

(4) The rationale for the study of ATX is unclear and the mechanism by which it improves mitochondrial integrity and autophagosome accumulation is not explored (but does not appear to depend on its anti-oxidant properties).

We have provided rationale for the study of ATX; provided in the introduction and result section, where we mentioned the following: “correction of ATP6V0A1 in CTNS-/- RPTECs and treatment with antioxidants specifically, astaxanthin (ATX) increased the production of cellular ATP6V0A1, identified from a custom FDA-drug database generated by our group, partially rescued the nephropathic RPTEC phenotype. ATX is a xanthophyll carotenoid occurring in a wide variety of organisms. ATX is reported to have the highest known antioxidant activity and has proven to have various anti-inflammatory, anti-tumoral, immunomodulatory, anti-cancer, and cytoprotective activities both in vivo and in vitro”.

We are still investigating the mechanism by which ATX improves mitochondrial integrity and this will be the focus of a follow-on manuscript.

(5) Thoughtful discussion on the lack of effect of ATP6VOA1 correction on cystine efflux from the lysosome is warranted, since this is presumably sensitive to intralysosomal pH.

We have provided a thoughtful discussion in the revised manuscript on some possible mechanisms that may result in an effect of ATP6V0A1 correction on cysteine efflux from the lysosome.

(6) Comparisons between RPTECs and fibroblasts cannot take into account the effects of immortalization on cell phenotype (not performed in fibroblasts).

The purpose of examining different tissue sources of primary cells in nephropathic cystinosis was to assess if any of the changes in these cells were tissue source specific. We used primary cells isolated from patients with nephropathic cystinosis—RPTECs from patients' urine and fibroblasts from patients' skin—these cells are not immortalized and can therefore be compared. This is noted in the results section - “Specific transcriptional signatures are observed in cystinotic skin-fibroblasts and RPTECs obtained from the same individual with cystinosis versus their healthy counterparts”.

We next utilized the immortalized RPTEC cell line to create CRISPR-mediated CTNS knockout RPTECs as a resource for studying the pathophysiology of cystinosis. These cells were not compared to the primary fibroblasts.

(7) This work will be of interest to the research community but is self-described as a pilot study. It remains to be clarified whether transient transfection of RPTECs with other H+ATPases could achieve results comparable to ATP6VOA1. Some insight into the mechanism by which ATX exerts its effects on RPTECs is needed to understand its potential for the treatment of cystinosis.

In future studies we will further investigate the effect of ATX on RPTECs for treatment of cystinosis- this will require the conduct of Phase 1 and Phase 2 clinical studies which are beyond the scope of this current manuscript.

Reviewer #2 (Public Review):

Sur and colleagues investigate the role of ATP6V0A1 in mitochondrial function in cystinotic proximal tubule cells. They propose that loss of cystinosin downregulates ATP6V0A1 resulting in acidic lysosomal pH loss, and adversely modulates mitochondrial function and lifespan in cystinotic RPTECs. They further investigate the use of a novel therapeutic Astaxanthin (ATX) to upregulate ATP6V0A1 that may improve mitochondrial function in cystinotic proximal tubules.

The new information regarding the specific proximal tubular injuries in cystinosis identifies potential molecular targets for treatment. As such, the authors are advancing the field in an experimental model for potential translational application to humans.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation