Association with TFIIIC limits MYCN localization in hubs of active promoters and chromatin accumulation of non-phosphorylated RNA Polymerase II

  1. Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg; Am Hubland, 97074 Würzburg, Germany
  2. Comprehensive Cancer Center Mainfranken; Josef-Schneider-Str. 6, 97080 Würzburg, Germany
  3. Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds; Leeds LS2 9JT, United Kingdom
  4. Mildred Scheel Early Career Center, University Hospital Würzburg; Josef-Schneider-Str. 6, 97080 Würzburg, Germany
  5. Theodor Boveri Institute, Core Unit High-Content Microscopy, Biocenter, University of Würzburg; Am Hubland, 97074 Würzburg, Germany

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Andrés Aguilera
    CABIMER, Universidad de Sevilla, Seville, Spain
  • Senior Editor
    Tony Ng
    King's College London, London, United Kingdom

Reviewer #1 (Public Review):

Summary:
In this manuscript entitled "Association with TFIIIC limits MYCN accumulation in hubs of active promoters and chromatin accumulation of non-phosphorylated RNA polymerase II" the authors examine how the cohesin complex component (and RNA pol III associated factor) TFIIIC interacts with MYCN and controls transcription. They confirm that TFIIIC co-purifies with MYCN, dependent on its amino terminus, as shown in previous work. The authors also find that TFIIIC and MYCN are both found in promoter hubs and suggest that TFIIIC inhibits MYCN's association with these hubs. Finally, the authors indicate that TFIIIC/MYCN alters exosome function, and BRCA1-dependent effects, at MYCN-regulated loci.

Strengths:
The authors utilize multiple experimental approaches to investigate the potential biological and genomic impacts of MYCN association with TFIIIC - the findings are interesting in suggesting that this interaction may limit or otherwise regulate MYC activity.

Weaknesses:
(1) In Figure 1, the authors show that TF3C binds to the amino terminus of MYCN (Myc box I region), as shown previously. The data in Figure 1 B-D support, but do not rigorously confirm a 'direct' interaction because it has not been ruled out that accessory proteins mediating the association may be present in the mixture.

(2) The authors indicate in Figure 2 that TF3C has essentially no effect on MYCN-dependent gene expression and/or transcription elongation. Yet a previous study (PMID: 29262328) associated with several of the same authors concluded that TF3C positively affects transcription elongation. The authors make no attempt to reconcile these disparate results and need to clarify this point.

(3) Figures 2B and C show that unphosphorylated pol2 is TSS-centered, and Ser2-P pol2 occupation is centered beyond the TES. From this data, however, the reader can't tell how much of the phospho-Ser2- pol2 is centered on the TSS. The authors should include overall plots over TSS and TES, and also perhaps the gene-body to allow a better comparison for TSS and TES plotted for both antibodies over the collected gene sets.

(4) The authors see more TF3C at promoters in cells with MYCN (Figure 2F). What are the levels of TF3C in the absence and presence of MYCN?

(5) The finding that TF3C is increased at TSS (Figure 2F) doesn't necessarily indicate that 1) MYCN is recruiting TF3C there, and 2) that this is due to the phosphorylation status of pol2. It could mean many other things. The logic of conflating these 3 points based on the data shown is questionable.

(6) Figure 3A doesn't add much to the paper, as it is overplotted and no relationship is clear, except that Pol2 and MYCN occupy many of the same sites. Perhaps a less complex or different type of plot would allow the interactions to be better visible.

(7) That depletion of TF3C leads to increased promoter hubs may or may not have anything to do with its association with MYCN (Figure 4E). This could be a direct consequence of its known structural function in cohesin complexes, and the MYCN changes as a secondary consequence of this (also see point 4, above).

(8) Depletion of TF3C5 results in a loss of EXOSC5 (exosome) at TSS in the presence and absence of MYCN (Figure 5B). As TF3C5 is a cohesin, could this simply be a consequence of genomic structure changes?

(9) The authors suggest that RNA dynamics are affected by changes in exosome function (RNA degradation, etc). What effect, if any does TF3C depletion have on the overall gene expression profile?

Reviewer #2 (Public Review):

This manuscript reports several interesting observations that invite follow-up. The notion that hubs, and perhaps condensates that may (or may not embrace them) are functionally and physiologically important is an open issue at this time. The authors note that TFIIIC helps to prune extraneous connections from hubs, but do not comment that the connections that are maintained are also reinforced. At the same time only modest changes in gene expression are associated with expanded or decreased connections and changes in bound proteins. One interesting possibility might be that standard methods for assessing expression miss changes in global or background transcription. It seems that the TFIIIC-MYCN-ER connection has features that would help to suppress such background. The results invite a more global consideration of TFIIIC than as primarily RNAPIII/small RNA transcription factor and of MYCN as an E-box dependent transcription factor. The results use state-of-the-art methods to develop interesting new ideas that have the potential to instruct further studies that may reveal new mechanisms of action for TFIIIC and MYCN

Strengths:
Use of a variety of methods to assess the genomic response to increased MYCN in the presence or absence of TFIIIC. Establishes in vitro and in vivo the TFIIIC-MYCN complex.

Weaknesses:
Dynamic inferences are made without kinetic experiments.

Reviewer #3 (Public Review):

Summary:
Vidal et al. investigated how TFIIIC may mediate MYCN effects on transcription. The work builds upon previous reports from the same group where they describe MYCN interactors in neuroblastoma cells (Buchel et al, 2017), which include TFIIIC, and their different roles in MYCN-dependent control of RNA polymerase II function (Herold et al, 2019) (Roeschert et al, 2021) (Papadopoulus et al, 2022). Using baculovirus expression systems, they confirm that MYCN-TFIIIC interaction is direct and likely relevant for neuroblastoma cell proliferation. However, transcriptomics analyses led them to conclude that TFIIC is largely dispensable for MYCN-dependent gene expression. Instead, they propose that TFIIC limits MYCN-mediated promoter-promoter 3D chromatin contacts, which would in turn facilitate the recruitment of the nascent RNA degradation machinery and restrict the accumulation of non-phosphorylated RNA polymerase II at promoters. How this mechanism may impact on MYCN-driven neuroblastoma cell biology remains to be elucidated.

Strengths:
This study presents a nice variety of genomic datasets addressing the specific role of TFIIIC in MYCN-dependent functions. In particular, the technically challenging HiChIP sequencing experiments performed under various conditions provide very useful information about the interplay between MYCN and TFIIIC in the regulation of 3D chromatin contacts. The authors show that MYCN and TFIIIC participate both in unique and overlapping long-range chromatin contacts and that the expression of each of these proteins limits the function of the other. Together, their results suggest a dynamic and interconnected relationship between MYCN and TFIIIC in regulating 3D chromatin contacts.

Weaknesses:
The connection between the three major findings presented in this study regarding the role of TFIIIC in the regulation of MYCN function remains unclear. Specifically, how the TFIIIC-dependent restriction of MYCN localization to promoter hubs enhances the association of factors involved in nascent RNA degradation to prevent the accumulation of inactive RNA polymerase II at promoters is not apparent. As they are currently presented, these findings appear as independent observations. Cross-comparison of the different datasets obtained may provide some insight into addressing this question.

Another concern involves the disparities in RNA polymerase II ChIP-seq results between this study and earlier ones conducted by the same group. In Figure 2, the authors demonstrate that activation of MYCN results in a reduction of non-phosphorylated RNA polymerase II across all expressed genes. This discovery contradicts prior findings obtained using the same methodology, where it was concluded that the expression of MYCN had no significant effect on the chromatin association of hypo-phosphorylated RNA polymerase II (Buchel et al, 2017). In this regard, the choice of the 8WG16 antibody raises concern, as fluctuations in the signal may be attributed to changes in the phosphorylation levels of the C-terminal domain. It remains unclear why the authors decided against using antibodies targeting the N-terminal domain of RNA polymerase II, which are unaffected by phosphorylation and consistently demonstrated a significant signal reduction upon MYCN activation in their previous studies (Buchel et al, 2017) (Herold et al, 2019). Similarly, the authors previously proposed that depletion of TFIIIC5 abrogates the MYCN-dependent increase of Ser2-phosphorylated RNA polymerase II (Buchel et al, 2017), whereas they now show that it has no obvious impact. These aspects need clarification.

Finally, the varied techniques employed to explore the role of TFIIIC in MYCN-dependent recruitment of nascent RNA degradation factors make it challenging to draw definitive conclusions about which factor is affected and which one is not. While conducting ChIPseq experiments for all factors may be beyond the scope of this manuscript, incorporating proximity ligation assays (PLA) or ChIP-qPCR assays with each factor would have enabled a more direct and comprehensive comparison.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation