Cardiac neurons expressing a glucagon-like receptor mediate cardiac arrhythmia induced by high-fat diet in Drosophila

  1. Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
  2. Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a response from the authors (if available).

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Edward Fisher
    New York University Grossman School of Medicine, New York, United States of America
  • Senior Editor
    Jonathan Cooper
    Fred Hutchinson Cancer Research Center, Seattle, United States of America

Reviewer #1 (Public Review):

Summary:

In the manuscript submission by Zhao et al. entitled, "Cardiac neurons expressing a glucagon-like receptor mediate cardiac arrhythmia induced by high-fat diet in Drosophila" the authors assert that cardiac arrhythmias in Drosophila on a high-fat diet are due in part to adipokinetic hormone (Akh) signaling activation. High-fat diet induces Akh secretion from activated endocrine neurons, which activate AkhR in posterior cardiac neurons. Silencing or deletion of Akh or AkhR blocks arrhythmia in Drosophila on a high-fat diet. Elimination of one of two AkhR-expressing cardiac neurons results in arrhythmia similar to a high-fat diet.

Strengths:

The authors propose a novel mechanism for high-fat diet-induced arrhythmia utilizing the Akh signaling pathway that signals to cardiac neurons.

Weaknesses:

Major comments:

(1) The authors state, "Arrhythmic pathology is rooted in the cardiac conduction system." This assertion is incorrect as a blanket statement on arrhythmias. There are certain arrhythmias that have been attributable to the conduction system, such as bradycardic rhythms, heart block, sinus node reentry, inappropriate sinus tachycardia, AV nodal reentrant tachycardia, bundle branch reentry, fascicular ventricular tachycardia, or idiopathic ventricular fibrillation to name a few. However the etiological mechanism of many atrial and ventricular arrhythmias, such as atrial fibrillation or substrate-based ventricular tachycardia, are not rooted in the conduction system. The introduction should be revised to reflect a clear focus on atrial fibrillation (AF). In addition, AF susceptibility is known to be modulated by autonomic tone, which is topically relevant to this manuscript.

(2) The authors state that "HFD led to increased heartbeat and an irregular rhythm." In representative examples shown, HFD resulted in pauses, slower heart rate, and increased irregularity in rhythm but not consistently increased heart rate (Figures 1B, 3A, and 4C). Based on the cited work by Ocorr et al (https://doi.org/10.1073/pnas.0609278104), Drosophila heart rate is highly variable with periods of fast and slow rates, which the authors attributed to neuronal and hormonal inputs. Ocorr et al then describe the use of "semi-intact" flies to remove autonomic input to normalize heart rate. Were semi-intact flies used? If not, how was heart rate variability controlled? And how was heart rate "increase" quantified in high-fat diet compared to normal-fat diet? Lastly, how does one measure "arrhythmia" when there is so much heart rate variability in normal intact flies?

(3) The authors state, "to test whether the HFD-induced increase in Akh in the APC affects APC neuron activity, we used CaLexA (https://doi.org/10.3109/01677063.2011.642910)." According to the reference, CaLexA is a tool to map active neurons and would not indicate, as the authors state, whether Akh affects APC neuron activity specifically. It is equally possible that APC neurons may be activated by HFD and produce more Akh. Please clarify this language.

(4) Are the AkhR+ neurons parasympathetic or sympathetic? Please provide additional experimentation that characterizes these neurons. The AkhR+ neurons appear to be anti-arrhythmic. Please expand the discussion to include a working hypothesis of the overall findings on Akh, AkhR, and AkhR+ neurons.

(5) The authors state, "Heart function is dependent on glucose as an energy source." However, the heart's main energy source is fatty acids with minimal use of glucose (doi: 10.1016/j.cbpa.2006.09.014). Glucose becomes more utilized by cardiomyocytes under heart failure conditions. Please amend/revise this statement.

Reviewer #2 (Public Review):

This manuscript explores mechanisms underlying heart contractility problems in metabolic disease using Drosophila as a model. They confirm, as others have demonstrated, that a high-fat diet (HFD) induces cardiac problems in flies. They showed that a high-fat diet increased Akh mRNA levels and calcium levels in the Akh-producing cells (APC), suggesting there is increased production and release of this hormone in a HFD context. When they knock down Akh production in the APCs using RNAi they see that cardiac contractility problems are abolished. They similarly show that levels of the Akh receptor (Akhr) are increased on a HFD and that loss of Akhr also rescues contractility problems on a HFD.

One highlight of the paper was the identification of a pair of neurons that express a receptor for the metabolic hormone Akh, and showing initial data that these neurons innervate the cardiac muscle. They then overexpress cell death gene reaper (rpr) in all Akhr-positive cells with Akhr-GAL4 and see that cardiac contractility becomes abnormal.

However, this paper contains several findings that have been reported elsewhere and it contains key flaws in both experimental design and data interpretation. There is some rationale for doing the experiments, and the data and images are of good quality. However, others have shown that HFD induces cardiac contractility problems (Birse 2010), that Akh mRNA levels are changed with HFD (Liao 2021) that Akh modulates cardiac rhythms (Noyes 1995), so Figures 1-4 are largely a confirmation of what is already known. This limits the overall magnitude of the advances presented in these figures. Overall, the stated concerns limit the impact of the manuscript in advancing our understanding of heart contractility.

Reviewer #3 (Public Review):

Zhao et al. provide new insights into the mechanism by which a high-fat diet (HFD) induces cardiac arrhythmia employing Drosophila as a model. HFD induces cardiac arrhythmia in both mammals and Drosophila. Both glucagon and its functional equivalent in Drosophila Akh are known to induce arrhythmia. The study demonstrates that Akh mRNA levels are increased by HFD and both Akh and its receptor are necessary for high-fat diet-induced cardiac arrhythmia, elucidating a novel link. Notably, Zhao et al. identify a pair of AKH receptor-expressing neurons located at the posterior of the heart tube. Interestingly, these neurons innervate the heart muscle and form synaptic connections, implying their roles in controlling the heart muscle. The study presented by Zhao et al. is intriguing, and the rigorous characterization of the AKH receptor-expressing neurons would significantly enhance our understanding of the molecular mechanism underlying HFD-induced cardiac arrhythmia.

Many experiments presented in the manuscript are appropriate for supporting the conclusions while additional controls and precise quantifications should help strengthen the authors' augments. The key results obtained by loss of Akh (or AkhR) and genetic elimination of the identified AkhR-expressing cardiac neurons do not reconcile, complicating the overall interpretation.

It is intriguing to see an increase in Akh mRNA levels in HFD-fed animals. This is a key result for linking HFD-induced arrhythmia to Akh. Thus, demonstrating that HFD also increases the Akh protein levels and Akh is secreted more should significantly strengthen the manuscript.

The experiments employing an AkhR null allele nicely demonstrate its requirement for HFD-induced cardiac arrhythmia. Depletion of Akh in Akh-expressing cells recapitulates the consequence of AkhR knockout, supporting that both Akh and its receptor are required for HFD-induced cardiac arrhythmia. Given that RNAi is associated with off-target effects and some RNAi reagents do not work, testing multiple independent RNAi lines is the standard procedure. It is also important to show the on-target effect of the RNAi reagents used in the study.

The most exciting result is the identification of AkhR-expressing neurons located at the posterior part of the heart tube (ACNs). The authors attempted to determine the function of ACNs by expressing rpr with AkhR-GAL4, which would induce cell death in all AkhR-expressing cells, including ACNs. The experiments presented in Figure 6 are not straightforward to interpret. Moreover, the conclusion contradicts the main hypothesis that elevated Akh is the basis of HFD-induced arrhythmia. The results suggest the importance of AkhR-expressing cells for normal heartbeat. However, elimination of Akh or AkhR restores normal rhythm in HFD-fed animals, suggesting that Akh and AkhR are not important for maintaining normal rhythms. If Akh signaling in ACNs is key for HFD-induced arrhythmia, genetic elimination of ACNs should unalter rhythm and rescue the HFD-induced arrhythmia. An important caveat is that the experiments do not test the specific role of ACNs. ACNs should be just a small part of the cells expressing AkhR. The experiments presented in Figure 6 cannot justify the authors' conclusion. Specific manipulation of ACNs will significantly improve the study. Moreover, the main hypothesis suggests that HFD may alter the activity of ACNs in a manner dependent on Akh and AkhR. Testing how HFD changes calcium, possibly by CaLexA (Figure 2) and/or GCaMP, in wild-type and AkhR mutants could be a way to connect ACNs to HFD-induced arrhythmia. Moreover, optogenetic manipulation of ACNs will allow for specific manipulation of ACNs, which is crucial for studying the specific role of ACNs in controlling cardiac rhythms.

Interestingly, expressing rpr with AkhR-GAL4 was insufficient to eliminate both ACNs. It is not clear why it didn't eliminate both ACNs. Given the incomplete penetrance, appropriate quantifications should be helpful. Additionally, the impact on other AhkR-expressing cells should be assessed. Adding more copies of UAS-rpr, AkhR-GAL4, or both may eliminate all ACNs and other AkhR-expressing cells. The authors could also try UAS-hid instead of UAS-rpr.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation