Pervasive relaxed selection on spermatogenesis genes coincident with the evolution of polygyny in gorillas

  1. Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
  2. EvoReproMed Lab. Environmental Health Institute (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Portugal
  3. Gulbenkian Science Institute, Oeiras, Portugal
  4. Institute of Reproductive Genetics, University of Münster, Münster, Germany
  5. Católica Biomedical Research Centre, Católica Medical School, Lisbon, Portugal
  6. Department of Ecology and Evolutionary Biology. University of Arizona, Tucson, AZ, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.


  • Reviewing Editor
    Wei Yan
    The Lundquist Institute, Torrance, United States of America
  • Senior Editor
    Wei Yan
    The Lundquist Institute, Torrance, United States of America

Reviewer #1 (Public Review):

This manuscript describes the pattern of relaxed selection observed at spermatogenesis genes in gorillas, presumably due to the low sperm competition associated with single-male polygyny. The analyses to detect patterns of selection are very thorough, as are the follow up analyses to characterize the function of these genes. Furthermore, the authors take the extra steps of in vivo determination of function with a Drosophila model.

This is an excellent paper. It addresses the interesting phenomenon of relaxation of selection as a genomic signal of reproductive strategies using multiple computational approaches and follow-up analyses by pulling in data from GO, mouse knockouts, human infertility database, and even Drosophila RNAi experiments. I really appreciate the comprehensive and creative approach to analyze and explore the data. As far as I can tell, the analyses were performed soundly and statistics are appropriate. The Introduction and Discussion sections are thoughtful and well-written. I have no major criticisms of the manuscript.

The main area that I would suggest for improvement is in the "Caveats and Limitations" section of the Discussion. Currently, the first paragraph of this section states the obvious that genetic manipulation of gorillas is not feasible. Beyond a reminder to the reader that this was a rationale for the Drosophila work, it isn't really adding much insight. The second paragraph is a brief discussion of the directionality of change. I think it comes across as overly simplistic, with a sort of "well, we can never know" feel. Obviously, there are plenty of researchers who do model change to infer direction and causation, and there are plenty of published papers attempting to do so with respect to mating systems in primates.

I do not think the authors need to remove these paragraphs, but I do encourage them to turn the "Caveats and Limitations" section into something more meaningful by addressing limitations of the work that was actually done rather than limitations of hypothetical things that were not done. A few areas come to mind. First, the authors should discuss the effect of gene-tree vs species-tree inconsistencies in the analyses, which could affect the identification of gorilla-specific amino acid changes and/or the dN/dS estimates. Incomplete lineage sorting is very common in primates including the gorilla-chimp-human splits (Rivas-González et al. 2023). It would be nice to hear the authors' thoughts on how that might affect their analyses. Second, the dN/dS-based analyses assume the neutrality of synonymous substitutions. Of course, that assumption is not completely true; it might be true enough, and the authors should at least note it as a caveat. Third, and potentially related, is the consideration that these protein-coding genes may be functioning in other ways such as via antisense transcription. The genes under relaxed selection may be on their way to becoming pseudogenes and evolving as such at the sequence level, but many pseudogenes continue to be transcribed sense or anti-sense in a regulatory purpose. I don't think there is a way to incorporate this into the authors' analyses but it would be nice to see it acknowledged as a caveat or limitation.

Reviewer #2 (Public Review):


Bowman and colleagues have compiled a large comparative genomic dataset to examine the molecular evolution of genes in mammals, with the primary goal of identifying how changes in the gorilla mating system have shaped the evolution of spermatogenesis. They report several patterns pointing to signal of relaxed purifying selection on genes involved in male fertility, a pattern that they interpret as a response to changes in the mating system of gorillas. Many previous studies have used comparisons among species of primates and other mammals to understand how changes in mating systems have shaped the evolution or reproductive traits and genes. These collective works have provided some of the best evidence that changes in the form and intensity of sexual selection has had a strong effect on the evolution of male reproduction. The current study builds on this rich history by exploring molecular evolution of over 13,310 genes across 261 mammals. This very large phylogenetic dataset allows affords considerable power to characterize patterns of molecular evolution along the gorilla lineage. This allows for some added power relative to a previous study that interrogated the same lineage-specific patterns (Scally et al. 2021). They report a subset of genes showing evidence for either positive directional selection (less than 1% of genes) or relaxed purifying selection (4% of genes) in gorillas. Relaxed purifying selection is more common than positive selection, and genes showing signatures of relaxed constraint are enriched for spermatogenesis functions using various tests based on functional annotation or gene expression and infertility associations in humans and mice. The authors also report new functional data - the only original data in this study - using a high throughput genetic screen showing that some of these genes are also expressed in spermatogenesis in flies, and when perturbed they affect male fertility.

These results are interpreted as strong evidence that changes in mating system, specifically that loss of sperm competition, has shaped the evolution of male reproduction in gorillas. The authors argue that these discoveries illustrate, for the first time, the genome-wide effect of striking changes in mating behavior in gorillas on the genetic underpinnings of male reproduction and provide new candidates relevant to male fertility in humans. Support for these central conclusions is eroded by a lack of appropriate comparative contrasts needed clarify the uniqueness of these patterns to gorillas and, critically, establish a direct phylogenetic association with mating system or correlated reproductive traits.


The presentation is engaging, clear, and easy to follow throughout. I enjoyed reading the overall narrative and I think that the authors did a good job of presenting the details of male reproductive biology in an informative and accessible manner. Given the general interest in gorilla evolution, and the clear relevance to humans, studies of this scope on male reproductive biology are likely to be of broad interest to both evolutionary and reproductive biologists.

The reported signatures of molecular evolution in gorillas appear robust, well-executed, and supported by several lines of evidence that establish some links with male reproduction. The authors have presented a series of molecular evolution analyses that demonstrate both rigor and attention to analytical details and quality control. Although all the primary sequence data has been previously published by others, the compilation of a high-quality curated comparative dataset of this scale is impressive and inspires confidence in the underlying molecular results. Likewise, the incorporation of diverse other data from mice and humans helps shape the overall narrative. To my knowledge, this represents the most focused and detailed analysis of protein-coding evolution specific to gorillas to date (although parallel results from the landmark gorilla genome study - Scally et al. 2012 - are downplayed somewhat).

Likewise, the inclusion of new functional data from Drosophila establishes a subset of genes showing recent changes in molecular evolution in gorillas that appear to be both deeply conserved in animals and related to male fertility.


This study lacks the necessary comparative framework needed to ascribe any of the reported patterns to changes in the reproductive system of gorillas, or to really understand the uniqueness of these patterns relative to other species. Although wording is careful at times, the authors repeatedly ascribe the patterns they are finding directly to the specific changes in mating system biology that has occurred in gorillas. The general framing and significance rests on the central finding that "these data provide compelling evidence that reduced sperm competition in gorillas is associated with relaxed purifying selection on genes related to male reproductive function (Abstract)". No such association between variation in mating system or at any correlated reproductive traits and molecular evolution is ever directly tested let alone established as a clear statistical correlation. The massive comparative dataset is used to localize patterns of molecular evolution to the gorilla lineage and then these patterns are interpreted in the context of changes in mating system, as an assumption of the study not a direct result. Although basic information of the reproductive system (or correlates thereof) likely exists for many of the 261 species included here, this information is never used to test for a relationship between changes in positive or purifying selection and reproduction.

The lack of any such comparisons is especially curious given that there are many previous studies that have sought and established such connections for traits and/or genes in mammals (dozens now?), and especially great apes, before. This comparative approach is the gold standard to making claims linking mating system to molecular evolution and yet this is not pursued here. The authors are correct in that they provide a rigorous genome-wide analysis (but not at all for the first time, see Scally et al. 2012), but they skip this critical central step to rigorous inference in comparative genomics. This is essentially a broad comparative study, but the central conclusion (a direct link between mating system and molecular evolution) is speculative and not actually tested.

Note that despite the framing here, there are of course several aspects of lineage specific biology that undoubtedly shape molecular evolution of male reproduction and fertility but could be unrelated to sperm competition per se. For example, shift in operational sex ratios can have profound effects on effective population sizes and the efficacy of selection, which of course would be expected to change the intensity and direction of molecular evolution. Likewise, shifts in population size, structure, and diet all can affect molecular evolution and reproduction.

In the absence of a broad phylogenetically independent contrast (which would be really interesting here), the authors need to at least establish that there is indeed something noteworthy about the specific findings they report relative to other systems that have a different mating system. Such comparisons would be readily available within the great apes, especially compared to chimpanzees and bonobos (Pan). Most of the patterns are presented in such a way to suggest a clear connection between the result and the unique features of gorilla reproduction, but are these clearly outliers? Relaxed purifying selection is much more common than positive selection, is this result qualitatively or quantitatively unique to gorillas as implied (I would honestly be surprised if it was as this is a common outcome of these dn/ds-based tests)? Similar questions and the need for more context apply to the various enrichment tests. That genes involved in male reproduction evolve rapidly and that this reflects both relaxed constraint and positive selection is an exceptionally well-established pattern, as is enrichment for reproductive functions/expression of such genes in unbiased genome-wide screens (as cited by the authors, including in gorillas by Scally et al. 2012 who performed a very similar analysis albeit with some model advances used in the current study). Do chimpanzees or humans lack these specific signatures of relaxed constraint at reproductive genes or is it a much stronger enrichment in gorillas? Establishing these baseline comparisons would help a lot with interpretation of the core findings. A little bit of this is explored with the human comparisons but not in a parallel genome-wide manner that places the signatures in gorillas in context.

I had similar questions related to the high-throughput Drosophila screen. This is a creative and novel component of the study. However, I am unclear on how to interpret the results or the conclusions drawn from them. It is very interesting that a subset of genes showing relaxed constraint are conserved to Drosophila and that perturbation of some of these cause fertility issues. However, the conclusion that these genes reflect novel candidates not implicated in sperm biology is a bit overstated. Here implicated means genes with an annotated sterility phenotype in humans, mice, flies, or gorillas - specific annotations which are pretty limited at least in the mammalian systems. The entire design was conditioned on analyzing genes that were reliably expressed during Drosophila spermatogenesis, and then focusing on those. But the comparative set for the enrichment test was a random set of genes. Shouldn't the background be a random set of testis-expressed genes? I would say that genes that are reliably expressed during spermatogenesis in both mammals and flies are implicated in sperm biology and genetic manipulation of such genes would be expected to produce fertility phenotypes at some appreciable rate. So the result here adds some interesting data but it does not seem unexpected or significant as framed.

Reviewer #3 (Public Review):


In this study the authors tested for alterations in selection intensity across ~13,000 protein coding genes along the gorilla lineage in order to test the hypothesis that the evolution of a polygynous social system resulted in relaxed selective constraint through a reduction in sperm competition. Of these genes, 578 exhibited signatures of relaxed purifying selection that were enriched for functions in male germ cells including meiosis and sperm biology. These genes were also more likely expressed in male germ cells and to contain deleterious mutations. Functional analysis of genes not previously implicated in male reproduction identified 41 new genes essential to male fertility in a Drosophila model. Moreover, genes under relaxed selective constraint in the gorilla lineage were more likely to contain loss of function variants in a cohort of infertile men. The authors conclude their results support the hypothesis that the emergence of a polygynous social system may have reduced the degree of selective pressures exerted through sperm competition.


(1) The identification of novel genes involved in spermatogenesis using signatures of relaxed selective constraint coupled to in vivo RNAi in Drosophila is very exciting and offers a proof of principal as to the power of evolutionarily-informed functional genomics that has been largely underutilized.


(1) The analysis is restricted to protein-coding regions of genes that have single, orthologous sequences spanning 261 mammalian species, and as such is a non-random set of 13,310 genes that have higher evolutionary conservation. While this approach is necessary for the analyses being performed, it excludes non-coding regions, recently duplicated genes/gene families, and rapidly evolving genes, which are all likely subject to stronger selection as compared to evolutionarily conserved genes (and gene regions). Thus, the conclusions of relaxed selective constraint as being pervasive is likely missing a large number of the most strongly selected genes, among which have repeatedly been shown to include sex and reproduction related genes. Would the results be similar if the set of orthologous genes were restricted to the primate lineage, as it may include more rapidly evolving genes?

(2) The identification of genes showing relaxed selection along the gorilla lineage, which are overrepresented in male reproduction, supports the hypothesis that the emergency of polygyny resulted in relaxed sperm competition and is the driving force behind their observations. However, there is no control group to support that polygyny is the driving force. To more fully test this hypothesis the authors should consider contrasting their findings to observations for other species whereby polygyny did not evolve (or a gradation between). Ideally this could be integrated into RELAX-Scan comparisons, but even a semi-qualitative observation could be made for lineages more often having shared signatures of relaxed constraint across the 576 genes identified in gorilla.

(3) The comparisons of infertile human males to a large number of presumably healthy males from a separate cohort can lead to genetic differences related to population structure and/or differences in study recruitment as compared to infertility, and care must be taken to avoid confounding in any association study before drawing conclusions. Population structure is likely to occur in human cohorts and is more likely to affect patterns of rare variation, even when controls are ascertained using similar enrollment criteria, geographic regions, racial/ethnic and national identities. In this study, the MERGE cohort upon a quick search appears to be largely recruited from Germany, vs. the control cohort gnomeAD is a more cosmopolitan study including somewhat diverse ancestries. Thus, it is likely the infertile vs. control cohort has existing genetic differences unrelated to the phenotype.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation