Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorYukiko YamashitaWhitehead Institute/MIT, Cambridge, United States of America
- Senior EditorUtpal BanerjeeUniversity of California, Los Angeles, Los Angeles, United States of America
Reviewer #1 (Public Review):
Summary:
In this manuscript, Benner et al. identify OVO as a transcriptional factor instrumental in promoting the expression of hundreds of genes essential for female germline identity and early embryo development. Prior data had identified both ovo and otu as genes activated by OVO binding to the promoters. By combining ChIP-seq, RNA-seq, and analysis of prior datasets, the authors extend these data to hundreds of genes and therefore propose that OVO is a master transcriptional regulator of oocyte development. They further speculate that OVO may function to promote chromatin accessibility to facilitate germline gene expression. Overall, the data compellingly demonstrate a much broader role for OVO in the activation of genes in the female germline than previously recognized. By contrast, the relationship between OVO, chromatin accessibility, and the timing of gene expression is only correlative, and more work will be needed to determine the mechanisms by which OVO promotes transcription.
Strengths:
Here Benner et al. convincingly show that OVO is a transcriptional activator that promotes expression of hundreds of genes in the female germline. The ChIP-seq and RNA-seq data included in the manuscript are robust and the analysis is compelling.
Importantly, the set of genes identified is essential for maternal processes, including egg production and patterning of the early embryo. Together, these data identify OVO as a major transcriptional activator of the numerous genes expressed in the female germline, deposited into the oocyte and required for early gene expression. This is an important finding as this is an essential process for development and prior to this study, the major drivers of this gene expression program were unknown.
Weaknesses:
The novelty of the manuscript is somewhat limited as the authors show that, like two prior, well-studied OVO target genes, OVO binds to promoters of germline genes and activates transcription. The fact that OVO performs this function more broadly is not particularly surprising.
A major challenge to understanding the impact of this manuscript is the fact that the experimental system for the RNA-seq, the tagged constructs, and the expression analysis that provides the rationale for the proposed pioneering function of OVO are all included in a separate manuscript.
Reviewer #2 (Public Review):
Summary:
In this manuscript, Benner et al. interrogate the transcriptional regulator OVO to identify its targets in the Drosophila germline. The authors perform ChIP-seq in the adult ovary and identify established as well as novel OVO binding motifs in potential transcriptional targets of OVO. Through additional bioinformatic analysis of existing ATAC-seq, CAGE-seq, and histone methylation data, the authors confirm previous reports that OVO is enriched at transcription start sites and suggest that OVO does not act as part of the core RNA polymerase complex. Benner et al. then perform bulk RNA-seq in OVO mutant and "wildtype" (GAL4 mediated expression of OVO under the control of the ovo promoter in OVO mutants) ovaries to identify genes that are differentially expressed in the presence of OVO. This analysis supports previous reports that OVO likely acts at transcription start sites as a transcriptional activator. While the authors propose that OVO activates the expression of genes that are important for egg integrity, maturation, and for embryonic development (nanos, gcl, pgc, bicoid), this hypothesis is based on correlation and is not supported by in vivo analysis of the respective OVO binding sites in some of the key genes. A temporal resolution for OVO's role during germline development and egg chamber maturation in the ovary is also missing. Together, this manuscript contains relevant ChIP-seq and RNA-seq datasets of OVO targets in the Drosophila ovary alongside thorough bioinformatic analysis but lacks important in vivo experimental evidence that would validate the high-quality datasets.
Strengths:
The manuscript contains relevant ChIP-seq and RNA-seq datasets of OVO targets in the Drosophila ovary alongside thorough bioinformatic analysis
Weaknesses:
1. The authors propose that OVO acts as a positive regulator of essential germline genes, such as those necessary for egg integrity/maturation and embryonic/germline development. Much of this hypothesis is based on GO term analysis (and supported by the authors' ChIP-seq data). However accurate interpretation of GO term enrichment is highly dependent on using the correct background gene set. What control gene set did the authors use to perform GO term analysis (the information was not in the materials and methods)? If a background gene set was not previously specified, it is essential to perform the analysis with the appropriate background gene set. For this analysis, the total set of genes that were identified in the authors' RNA-seq of OVO-positive ovaries would be an ideal control gene set for which to perform GO term analysis. Alternatively, the total set of genes identified in previous scRNA-seq analysis of ovaries (see Rust et al., 2020, Slaidina et al., 2021 among others) would also be an appropriate control gene set for which to perform GO term analysis. If indeed GO term analysis of the genes bound by OVO compared to all genes expressed in the ovary still produces an enrichment of genes essential for embryonic development and egg integrity, then this hypothesis can be considered.
2. The authors provide important bioinformatic analysis of new and existing datasets that suggest OVO binds to specific motifs in the promoter regions of certain germline genes. While the bioinformatic analysis of these data is thorough and appropriate, the authors do not perform any in vivo validation of these datasets to support their hypotheses. The authors should choose a few important potential OVO targets based on their analysis, such as gcl, nanos, or bicoid (as these genes have well-studied phenotypes in embryogenesis), and perform functional analysis of the OVO binding site in their promoter regions. This may include creating CRISPR lines that do not contain the OVO binding site in the target gene promoter, or reporter lines with and without the OVO binding site, to test if OVO binding is essential for the transcription/function of the candidate genes.
3. The authors perform de novo motif analysis to identify novel OVO binding motifs in their ChIP-seq dataset. Motif analysis can be significantly strengthened by comparing DNA sequences within peaks, to sequences that are just outside of peak regions, thereby generating motifs that are specific to peak regions compared to other regions of the promoter/genome. For example, taking the 200 nt sequence on either side of an OVO peak could be used as a negative control sequence set. What control sequence set did the authors use as for their de novo motif analysis? More detail on this is necessary in the materials and methods section. Re-analysis with an appropriate negative control sequence set is suggested if not previously performed.
4. The authors mention that OVO binding (based on their ChIP-seq data) is highly associated with increased gene expression (lines 433-434). How many of the 3,094 peaks (conservative OVO binding sites), and what percentage of those peaks, are associated with a significant increase in gene expression from the RNA-seq data? How many are associated with a decrease in gene expression? This information should be added to the results section.
5. The authors mention that a change in endogenous OVO expression cannot be determined from the RNA-seq data due to the expression of the OVO-B cDNA rescue construct. Can the authors see a change in endogenous OVO expression based on the presence/absence of OVO introns in their RNA-seq dataset? While intronic sequences are relatively rare in RNA-seq, even a 0.1% capture rate of intronic sequence is likely to be enough to determine the change in endogenous OVO expression in the rescue construct compared to the OVO null.
6. The authors conclude with a model of how OVO may participate in the activation of transcription in embryonic pole cells. However, the authors did not carry out any experiments with pole cells that would support/test such a model. It may be more useful to end with a model that describes OVO's role in oogenesis, which is the experimental focus of themanuscript.