Evolutionary trends of alternative splicing

  1. Austral Center for Scientific Research (CADIC-CONICET), 9410 Ushuaia, Argentina;
  2. Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Spanish National Research Council (CSIC), 46980 Valencia, Spain
  3. Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), 46020 Valencia, Spain
  4. Center for Biomedical Research in Epidemiology and Public Health Network (CIBEResp), 28029 Madrid, Spain

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Virginie Courtier-Orgogozo
    CNRS - Universite Paris Cite, Paris, France
  • Senior Editor
    Alan Moses
    University of Toronto, Toronto, Canada

Reviewer #1 (Public Review):

Summary:

The authors collected genomic information from public sources covering 423 eukaryote genomes and around 650 prokaryote genomes. Based on pre-computed CDS annotation, they estimated the frequency of alternative splicing (AS) as a single average measure for each genome and computed correlations with this measure and other genomic properties such as genome size, percentage of coding DNA, gene and intergenic span, etc. They conclude that AS frequency increases with genome complexity in a somewhat directional trend from "lower" organisms to "higher" organisms.

Strengths:

The study covers a wide range of taxonomic groups, both in prokaryotes and eukaryotes.

Weaknesses:

The study is weak both methodologically and conceptually. Current high throughput sequencing technologies, coupled with highly heterogeneous annotation methods, can observe cases of AS with great sensitivity, and one should be extremely cautious of the biases and rates of false positives associated with these methods. These issues are not addressed in the manuscript. Here, AS measures seem to be derived directly from CDS annotations downloaded from public databases, and do not account for differing annotation methods or RNA sequencing depth and tissue sample diversity.

There is no mention of the possibility that AS could be largely caused by random splicing errors, a possibility that could very well fit with the manuscript's data. Instead, the authors adopt early on the view that AS is regulated and functional, generally citing outdated literature.

There is no question that some AS events are functional, as evidenced by strongly supported studies. However, whether all AS events are functional is questionable, and the relative fractions of functional and non-functional AS are unknown. With this in mind, the authors should be more cautious in interpreting their data. The "complexity" of organisms also correlates well (negatively) with effective population size. The power of selection to eliminate (slightly) deleterious mutations or errors decreases with effective population size. The correlation observed by the authors could thus easily be explained by a non-adaptive interpretation based on simple population genetics principles.

The manuscript contains evidence that the authors might benefit from adopting a more modern view of how evolution proceeds. Sentences such as "... suggests that only sophisticated organisms optimize alternative splicing by increasing..." (L113), or "especially in highly evolved groups such as mammals" (L130), or the repeated use of "higher" and "lower" organisms need revising.

Because of the lack of controls mentioned above, and because of the absence of discussion regarding an alternative non-adaptive interpretation, the analyses presented in the manuscript are of very limited use to other researchers in the field. In conclusion, the study does not present solid conclusions.

Reviewer #2 (Public Review):

Summary:

In this contribution, the authors investigate the degree of alternative splicing across the evolutionary tree and identify a trend of increasing alternative splicing as you move from the base of the tree (here, only prokaryotes are considered) towards the tips of the tree. In particular, the authors investigate how the degree of alternative splicing (roughly speaking, the number of different proteins made from a single ORF (open reading frame) via alternative splicing) relates to three genomic variables: the genome size, the gene content (meaning the fraction of the genome composed of ORFs), and finally, the coding percentage of ORFs, meaning the ratio between exons and total DNA in the ORF. When correlating the degree of alternative splicing with these three variables, they find that the different taxonomic groups have a different correlation coefficient, and identify a "progressive pattern" among metazoan groups, namely that the correlation coefficient mostly increases when moving from flowering plants to arthropods, fish, birds, and finally mammals. They conclude that therefore the amount of splicing that is performed by an organismal group could be used as a measure of its complexity.

Weaknesses:

While I find the analysis of alternative splicing interesting, I also find that it is a very imperfect measure of organismal complexity and that the manuscript as a whole is filled with unsupported statements. First, I think it is clear to anyone studying evolution over the tree of life that it is the complexity of gene regulation that is at the origin of much of organismal structural and behavioral complexity. Arguably, creating different isoforms out of a single ORF is just one example of complex gene regulation. However, the complexity of gene regulation is barely mentioned by the authors. Further, it is clear that none of their correlation coefficients actually show a simple trend (see Table 3). According to these coefficients, birds are more complex than mammals for 3 out of 4 measures. It is also not clear why the correlation coefficient between alternative splicing ratio and genome length, gene content, and coding percentage should display such a trend, rather than the absolute value. There are only vague mechanistic arguments.

Much more troubling, however, is the statement that the data supports "lineage-specific trends" (lines 299-300). Either this is just an ambiguous formulation, or the authors claim that you can see trends *within* lineages. The latter is clearly not the case. In fact, within each lineage, there is a tremendous amount of variation, to such an extent that many of the coefficients given in Table 3 are close to meaningless. Note that no error bars or p-values are presented for the values shown in Table 3. Figure 2 shows the actual correlation, and the coefficient for flowering plants there is given as 0.151, with a p-value of 0.193. Table 3 seems to quote r=0.174 instead. It should be clear that a correlation within a lineage or species is not a sign of a trend.

There are several wrong or unsupported statements in the manuscript. Early on, the authors state that the alternative splicing ratio (a number greater or equal to one that can be roughly understood as the number of different isoforms per ORF) "quantifies the number of different isoforms that can be transcribed using the same amount of information" (lines 51-52). But in many cases, this is incorrect, because the same sequence can represent different amounts of information depending on the context. So, if a changed context gives rise to a different alternative splice, it is because the genetic sequence has a different meaning in the changed context: the information has changed. In line 149, the authors state that "the energetic cost of having large genomes is high". No citation is given, and while such a statement seems logical, it does not have very solid support. If there was indeed a strong selective force to reduce genome size, we would not see the stunning diversity of genome sizes even within lineages. This statement is repeated (without support) several times in the manuscript, apparently in support of the idea that mammals had "no choice" to increase complexity via alternative splicing because they can't increase it by having longer genomes. I don't think this reasoning can be supported. Even more problematic is the statement that "the amount of protein-coding DNA seems to be limited to a size of about 10MB" (line 219). There is no evidence whatsoever for this statement. The reference that is cited (Choi et al 2020) suggests that there is a maximum of 150GB in total genome size due to physiological constraints. In lines 257-258, the authors write that "plants are less restricted in terms of storing DNA sequences compared to animals" (without providing evidence or a citation). I believe this statement is made due to the observation that plants tend to have large intergenic regions. But without examining the functionality of these interagency regions (they might host long non-coding RNA stretches that are used to regulate the expression of other genes, for example) it is quite adventurous to use such a simple measure as being evidence that plants "are less restricted in terms of storing DNA sequences", whatever that even means. I do not think the authors mean that plants have better access to -80 freezers. The authors conclude that "plant's primary mechanism of genome evolution is by expanding their genome". This statement itself is empty: we know that plants are prone to whole genome duplication, but this duplication is not, as far as we understand, contributing to complexity. It is not a "primary mechanism of genome evolution". In lines 293-294, the authors claim that "alternative splicing is maximized in mammalian genomes". There is no evidence that this ratio cannot be increased. So, to conclude (on lines 302-303) that alternative splicing ratios are "a potential candidate to quantify organismal complexity" seems, based on this evidence, both far-fetched and weak at the same time.

I am also not very comfortable with the data analysis. The authors, for example, say that they have eliminated from their analysis a number of "outlier species". They mention one: Emmer wheat because it has a genome size of 900 Mb (line 367). Since 900MB does not appear to be extreme, perhaps the authors meant to write 900 Gb. When I consulted the paper that sequenced Triticum dicoccoides, they noted that 14 chromosomes are about 10GB. Even a tetraploid species would then not be near 900Gb. But more importantly, such a study needs to state precisely which species were left out, and what the criteria are for leaving out data, lest they be accused of selecting data to fit their hypothesis.

I understand that Methods are often put at the end of a manuscript, but the measures discussed here are so fundamental to the analysis that a brief description of what the different measures are (in particular, the "alternative splicing ratio") should be in the main text, even when the mathematical definition can remain in the Methods.

Finally, a few words on presentation. I understand that the following comments might read differently after the authors change their presentation. This manuscript was at the border of being comprehensible. In many cases, I could discern the meaning of words and sentences in contexts but sometimes even that failed (as an example above, about "species-specific trends", illustrates). The authors introduced jargon that does not have any meaning in the English language, and they do this over and over again.

Note that I completely agree with all the comments by the other reviewer, who alerted me to problems I did not catch, including the possible correlation with effective population size: a possible non-adaptive explanation for the results.

Author response:

Reviewer #1 (Public Review):

Summary:

The authors collected genomic information from public sources covering 423 eukaryote genomes and around 650 prokaryote genomes. Based on pre-computed CDS annotation, they estimated the frequency of alternative splicing (AS) as a single average measure for each genome and computed correlations with this measure and other genomic properties such as genome size, percentage of coding DNA, gene and intergenic span, etc. They conclude that AS frequency increases with genome complexity in a somewhat directional trend from "lower" organisms to "higher" organisms.

Strengths:

The study covers a wide range of taxonomic groups, both in prokaryotes and eukaryotes.

Weaknesses:

The study is weak both methodologically and conceptually. Current high throughput sequencing technologies, coupled with highly heterogeneous annotation methods, can observe cases of AS with great sensitivity, and one should be extremely cautious of the biases and rates of false positives associated with these methods. These issues are not addressed in the manuscript. Here, AS measures seem to be derived directly from CDS annotations downloaded from public databases, and do not account for differing annotation methods or RNA sequencing depth and tissue sample diversity.

We are aware of the bias that may exist in annotation files. Since the source of noise can be highly variable, we have assumed that most of the data has a similar bias. However, we agree with the reviewer that we could perform some analysis to test for these biases and their association to different methodologies. Thus, we will measure the uncertainty present in the data. From one side, we will be more explicit about the data limitations and the biases it can generate in the results. On the other side, while analyzing the false positives in the data is out of our scope, we will perform a statistical test to detect possible biases regarding different methods of sequencing and annotation, and types of organisms (model or non-model organisms). If positive, we will proceed, as far as possible, to normalize the data or to estimate a confidence interval.

Here, AS measures seem to be derived directly from CDS annotations downloaded from public databases, and do not account for differing annotation methods or RNA sequencing depth and tissue sample diversity.

Beyond taking into account the differential bias that may exist in the data, we do not consider that our AS measure is problematic. The NCBI database is one of the most reliable databases that we have to date and is continuously updated from all scientific community. So, the use of this data and the corresponding procedures for deriving the AS measure are perfectly acceptable for a comparative analysis on such a huge global scale. Furthermore, the proposal of a new genome-level measure of AS that allows to compare species spanning the whole tree of life is part of the novelty of the study. We understand that small-scale studies require a high specificity about the molecular processes involved in the study. However, this is not the case, where we are dealing with a large-scale problem. On the other side, as we have previously mention, we agree with the reviewer to analyze the degree of uncertainty in the data to better interpret the results.

There is no mention of the possibility that AS could be largely caused by random splicing errors, a possibility that could very well fit with the manuscript's data. Instead, the authors adopt early on the view that AS is regulated and functional, generally citing outdated literature.

There is no question that some AS events are functional, as evidenced by strongly supported studies. However, whether all AS events are functional is questionable, and the relative fractions of functional and non-functional AS are unknown. With this in mind, the authors should be more cautious in interpreting their data.

Many studies suggest that most of the AS events observed are the result of splicing errors and are therefore neither functional nor conserved. However, we still have limited knowledge about the functionality of AS. Just because we don’t have a complete understanding of its functionality, doesn’t mean there isn’t a fundamental cause behind these events. AS is a highly dynamic process that can be associated with processes of a stochastic nature that are fundamental for phenotypic diversity and innovation. This is one of the reasons why we do not get into a discussion about the functionality of AS and consider it as a potential measure of biological innovation. Nevertheless, we agree with the reviewer’s comments, so we will add a discussion about this issue with updated literature and look at any possible misinterpretation of the results.

The "complexity" of organisms also correlates well (negatively) with effective population size. The power of selection to eliminate (slightly) deleterious mutations or errors decreases with effective population size. The correlation observed by the authors could thus easily be explained by a non-adaptive interpretation based on simple population genetics principles.

We appreciate the observation of the reviewer. We know well the M. Lynch’s theory on the role of the effective population size and its eventual correlation with genomic parameters, but we want to emphasize that our objective is not to find an adaptive or non-adaptive explanation of the evolution of AS, but rather to reveal it. Nevertheless, as the reviewer suggests, we will look at the correlation between the AS and the effective population size and discuss about a possible non-adaptive interpretation.

The manuscript contains evidence that the authors might benefit from adopting a more modern view of how evolution proceeds. Sentences such as "... suggests that only sophisticated organisms optimize alternative splicing by increasing..." (L113), or "especially in highly evolved groups such as mammals" (L130), or the repeated use of "higher" and "lower" organisms need revising.

As the reviewer suggests, we will proceed with the corresponding linguistic corrections.

Because of the lack of controls mentioned above, and because of the absence of discussion regarding an alternative non-adaptive interpretation, the analyses presented in the manuscript are of very limited use to other researchers in the field. In conclusion, the study does not present solid conclusions.

Reviewer #2 (Public Review):

Summary:

In this contribution, the authors investigate the degree of alternative splicing across the evolutionary tree and identify a trend of increasing alternative splicing as you move from the base of the tree (here, only prokaryotes are considered) towards the tips of the tree. In particular, the authors investigate how the degree of alternative splicing (roughly speaking, the number of different proteins made from a single ORF (open reading frame) via alternative splicing) relates to three genomic variables: the genome size, the gene content (meaning the fraction of the genome composed of ORFs), and finally, the coding percentage of ORFs, meaning the ratio between exons and total DNA in the ORF. When correlating the degree of alternative splicing with these three variables, they find that the different taxonomic groups have a different correlation coefficient, and identify a "progressive pattern" among metazoan groups, namely that the correlation coefficient mostly increases when moving from flowering plants to arthropods, fish, birds, and finally mammals. They conclude that therefore the amount of splicing that is performed by an organismal group could be used as a measure of its complexity.

Weaknesses:

While I find the analysis of alternative splicing interesting, I also find that it is a very imperfect measure of organismal complexity and that the manuscript as a whole is filled with unsupported statements. First, I think it is clear to anyone studying evolution over the tree of life that it is the complexity of gene regulation that is at the origin of much of organismal structural and behavioral complexity. Arguably, creating different isoforms out of a single ORF is just one example of complex gene regulation. However, the complexity of gene regulation is barely mentioned by the authors.

We disagree with the reviewer with that our measure of AS is imperfect. Just as we responded to the first reviewer, we will quantify the uncertainty in the data and correct for differential biases caused by annotation and sequencing methods. Thus, beyond correcting relevant biases in the data, we consider that our measure is adequate for a comparative analysis at a global scale. A novelty of our study is the proposal of a genome-level measure of AS that takes into account data from the entire scientific community.

We want also to emphasize that we assume from the beginning that AS may reflect some kind of biological complexity, it is not a conclusion from the results. An argument in favor of such an assumption is that AS is associated with stochastic processes that are fundamental for phenotypic diversity and innovation. Of course, we agree with the reviewer that it is not the only mechanism behind biological complexity, so we will emphasize it in the manuscript. On the other side, we will be more explicit about the assumptions and objectives, and will correct any unsupported statement.

Further, it is clear that none of their correlation coefficients actually show a simple trend (see Table 3). According to these coefficients, birds are more complex than mammals for 3 out of 4 measures.

An evolutionary trend is broadly defined as the gradual change in some characteristic of organisms as they evolve or adapt to a specific environment. Under our context, we define an evolutionary trend as the gradual change in genome composition and its association with AS across the main taxonomic groups. If we look at Figure 4 and Table 3 we can conclude that there is a progressive trend. We will be more precise about how we define an evolutionary trend and correct any possible misinterpretation of the results. On the other side, we do not assume that mammals should be more complex than birds. First, we will emphasize that our results show that birds have the highest values of such a trend. Second, after reading the reviewer’s comments, we have decided that we will perform an additional analysis to correct for differences in the taxonomic group sizes, which will allow us to have more confidence in the results.

It is also not clear why the correlation coefficient between alternative splicing ratio and genome length, gene content, and coding percentage should display such a trend, rather than the absolute value. There are only vague mechanistic arguments.

The study analyzes the relationship of AS with genomic composition for the large taxonomic groups. We assume that significant differences in these relationships are indicators of the presence of different mechanisms of genome evolution. However, we agree with the reviewer that a correlation does not imply a causal relation, so we will be more cautious when interpreting the results.

To quantify the relationships we use correlation coefficients, the slopes of such correlations, and the relation of variability. Although the absolute values of AS are also illustrated in Table 4, we consider that they are less informative than if we include how it relates to the genomic composition. For example, we observe that plants have a different genome composition and relation with AS if compared to animals, which suggest that they follow different mechanisms of genome evolution. On the other hand, we observe a trend in animals, where high values of AS are associated to a large percentage of introns and a percentage of intergenic DNA of about the 50% of genomes.

Much more troubling, however, is the statement that the data supports "lineage-specific trends" (lines 299-300). Either this is just an ambiguous formulation, or the authors claim that you can see trends *within* lineages.

We agree with the reviewer that this statement is not correct, so we will proceed to correct it.

The latter is clearly not the case. In fact, within each lineage, there is a tremendous amount of variation, to such an extent that many of the coefficients given in Table 3 are close to meaningless. Note that no error bars or p-values are presented for the values shown in Table 3. Figure 2 shows the actual correlation, and the coefficient for flowering plants there is given as 0.151, with a p-value of 0.193. Table 3 seems to quote r=0.174 instead. It should be clear that a correlation within a lineage or species is not a sign of a trend.

The reviewer is not understanding correctly the results in Table 3. It is precisely the variation of the genome variables what we are measuring. Given the standardization of these values by the mean values, we have proceeded to compare the variability between groups, which is the result shown in Table 3. In this case there are no error bars or p-values associated. On the other hand, we agree that a correlation is not a sign of a trend. But the relations of variability, together with the results obtained in Figure 3, are indicators of a trend. As we mentioned before, we will proceed to analyze whether the variation in the group sizes is causing a bias in the results.

There are several wrong or unsupported statements in the manuscript. Early on, the authors state that the alternative splicing ratio (a number greater or equal to one that can be roughly understood as the number of different isoforms per ORF) "quantifies the number of different isoforms that can be transcribed using the same amount of information" (lines 51-52). But in many cases, this is incorrect, because the same sequence can represent different amounts of information depending on the context. So, if a changed context gives rise to a different alternative splice, it is because the genetic sequence has a different meaning in the changed context: the information has changed.

We agree that there are not well supported statements, so we will proceed to revise them.

In line 149, the authors state that "the energetic cost of having large genomes is high". No citation is given, and while such a statement seems logical, it does not have very solid support.

We will also revise the bibliography and support our statements with updated references.

If there was indeed a strong selective force to reduce genome size, we would not see the stunning diversity of genome sizes even within lineages. This statement is repeated (without support) several times in the manuscript, apparently in support of the idea that mammals had "no choice" to increase complexity via alternative splicing because they can't increase it by having longer genomes. I don't think this reasoning can be supported.

We agree with the reviewer in this issue, so we will carefully revise the statements that indirectly (or directly) assume the action of selective forces on the genome composition.

Even more problematic is the statement that "the amount of protein-coding DNA seems to be limited to a size of about 10MB" (line 219). There is no evidence whatsoever for this statement.

In Figure 1A we observe a one-to-one relationship between the genome size and the amount of coding. However, in multicellular organisms, although the genome size increases we observe that the amount of coding does not increase by more than 10Mb, which suggest the presence of some genomic limitation. Of course, this is not an absolute or general statement, but rather a suggestion. We are only describing our results.

The reference that is cited (Choi et al 2020) suggests that there is a maximum of 150GB in total genome size due to physiological constraints. In lines 257-258, the authors write that "plants are less restricted in terms of storing DNA sequences compared to animals" (without providing evidence or a citation).

We will revise the bibliography and add updated references.

I believe this statement is made due to the observation that plants tend to have large intergenic regions. But without examining the functionality of these interagency regions (they might host long non-coding RNA stretches that are used to regulate the expression of other genes, for example) it is quite adventurous to use such a simple measure as being evidence that plants "are less restricted in terms of storing DNA sequences", whatever that even means. I do not think the authors mean that plants have better access to -80 freezers. The authors conclude that "plant's primary mechanism of genome evolution is by expanding their genome". This statement itself is empty: we know that plants are prone to whole genome duplication, but this duplication is not, as far as we understand, contributing to complexity. It is not a "primary mechanism of genome evolution".

We will revise these statements.

In lines 293-294, the authors claim that "alternative splicing is maximized in mammalian genomes". There is no evidence that this ratio cannot be increased. So, to conclude (on lines 302-303) that alternative splicing ratios are "a potential candidate to quantify organismal complexity" seems, based on this evidence, both far-fetched and weak at the same time.

Our results show the highest values of AS in mammals, but we understand that the results are limited to the availability and accuracy of data, which we will emphasize in the manuscript. As we previously mention, we will also proceed to analyze the uncertainty in data and carry out the appropriate corrections.

I am also not very comfortable with the data analysis. The authors, for example, say that they have eliminated from their analysis a number of "outlier species". They mention one: Emmer wheat because it has a genome size of 900 Mb (line 367). Since 900MB does not appear to be extreme, perhaps the authors meant to write 900 Gb. When I consulted the paper that sequenced Triticum dicoccoides, they noted that 14 chromosomes are about 10GB. Even a tetraploid species would then not be near 900Gb. But more importantly, such a study needs to state precisely which species were left out, and what the criteria are for leaving out data, lest they be accused of selecting data to fit their hypothesis.

The reviewer is right, we wanted to say 900Mb, which is approximately 7.2Gb. We had a mistake of nomenclature. This value is extreme compared to the typical values, so it generates large deviations when applying measures of central tendency and dispersion. We want to obtain mean values that are representative of the most species composing the taxonomic groups, so we find appropriate to exclude all outlier values in the study. Nevertheless, we will specify the criteria that we have used to select the data in a rigorous way.

I understand that Methods are often put at the end of a manuscript, but the measures discussed here are so fundamental to the analysis that a brief description of what the different measures are (in particular, the "alternative splicing ratio") should be in the main text, even when the mathematical definition can remain in the Methods.

We agree with the reviewer, so we will add a brief description of the genomic variables at the beginning of the Results section.

Finally, a few words on presentation. I understand that the following comments might read differently after the authors change their presentation. This manuscript was at the border of being comprehensible. In many cases, I could discern the meaning of words and sentences in contexts but sometimes even that failed (as an example above, about "species-specific trends", illustrates). The authors introduced jargon that does not have any meaning in the English language, and they do this over and over again.

Note that I completely agree with all the comments by the other reviewer, who alerted me to problems I did not catch, including the possible correlation with effective population size: a possible non-adaptive explanation for the results.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation