Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorVatsala ThirumalaiNational Centre for Biological Sciences, Bangalore, India
- Senior EditorJohn HuguenardStanford University School of Medicine, Stanford, United States of America
Reviewer #1 (Public Review):
To understand the spinal locomotor circuits, we need to reveal how various types of spinal interneurons work in the circuits. So far, the general roles of the cardinal groups of spinal interneurons (dI6, V0, V1, V2a, V2b, and V3) involved in locomotion have been roughly established but not fully understood. Each group is believed to contain some clades with more detailed functional differences. However, each character and function of these clades has not yet been elucidated.
In this study, Worthy et al. investigated clades of V1 neurons that are one of the main groups of inhibitory neurons in the spinal cord. Previous reports proposed four clades (Renshaw cells, FoxP2, sp8, and pou6f2) in V1 neurons defined by the expression of transcription factors. For V1 neurons in each of the four clades, the authors investigated the birth time and showed the postnatal location in the spinal cord according to the birth time. They found FoxP2-V1 located near LMC motor neurons that project to the limb. Using genetically labeled Foxp2-V1 mice, they showed that most of the synapses of V1 neurons on the cell bodies of motor neurons were from Foxp2-V1 and Renshaw cells. Furthermore, a higher proportion of Foxp2-V1 synapses is observed on LMC motor neurons than on axial motor neurons. They proposed that Foxp2-V1, which represents 60% of V1, can be further classified according to the expression of transcription factors Otp and Foxp4.
These results will be helpful for future analyses of the development and function of V1 neurons. In particular, the discovery of strong synaptic connections between Foxp2-V1 and LMC motor neurons will be beneficial in analyzing the role of V1 neurons in motor circuits that generate movement of the limbs.
The conclusions of this paper are well supported by the data obtained using widely used methods. However, for some analyses, the specificity of labeling V1 clades should be clearly described.
(1) In Figure 1, the MafB antibody (Sigma) was used to identify Renshaw cells at P5. However, according to the supplementary Figure 3D, the specificity of the MafB antibody (Sigma) is relatively low. The image of MafB-GFP, V1-INs, and MafB-IR at P5 should be added to the supplementary figure. The specificity of MaFB-IR-Sigma in V1 neurons at P5 should be shown. This image also might support the description of the genetically labeled MafB-V1 distribution at P5 (page 8, lines 28-32).
(2) The proportion of genetically labeled FoxP2-V1 in all V1 is more than 60%, although immunolabeled FoxP2-V1 is approximately 30% at P5. Genetically labeled Otp-V1 included other non-FoxP2 V1 clades (Fig. 8L-M). I wonder whether genetically labeled FoxP2-V1 might include the other three clades. The authors should show whether genetically labeled FoxP2-V1 expresses other clade markers, such as pou6f2, sp8, and calbindin, at P5.
Reviewer #2 (Public Review):
Summary:
This work brings important information regarding the composition of interneurons in the mammalian spinal cord, with a developmental perspective. Indeed, for the past decades, tools inspired from developmental biology have opened up promising avenues for challenging the functional heterogeneity in the spinal cord. They rely on the fact that neurons sharing similar mature properties also share a largely similar history of expression of specific transcription factor (TF) genes during embryogenic and postnatal development. For instance, neurons originating from p1 progenitors and expressing the TF Engrailed-1, form the V1 neuronal class. While such "cardinal" neuronal classes defined by one single RF indeed share numerous features - e.g., for the case of V1 neurons, a ventral positioning, an inhibitory nature and ipsilatetal projections - there is accumulating evidence for a finer-grained diversity and specialization in each class which is still largely obscure. The present work studies the heterogeneity of V1 interneurons and describes multiple classes based on their birthdate, final positioning, and expression of additional TF. It brings in particular a solid characterization of the Foxp2-expressing V1 interneurons for which authors also delve into the connectivity, and hence, possible functional implication. The work will be of interest to developmental biologists and those interested in the organization of the locomotor spinal network.
Strengths:
This study has deeply analyzed the diversity of V1 neurons by intersecting multiple criteria: TF expression, birthdate, location in the spinal cord, diversity along the rostro-caudal axis, and for some subsets, connectivity. This illustrates and exemplifies the absolute need to not consider cardinal classes, defined by one single TF, as homogeneous. Rather, it highlights the limits of single-TF classification, and exemplifies the existence of further diversity within cardinal class.
Experiments are generally well performed with a satisfactory number of animals and adequate statistical tests.
Authors have also paid strong attention to potential differences in cell-type classification when considering neurons currently expressing of a given TF (e.g., using antibodies), from those defined as having once expressed that TF (e.g., defined by a lineage-tracing strategy). This ambiguity is a frequent source of discrepancy of findings across studies.
Furthermore, there is a risk in developmental studies to overlook the fact that the spinal cord is functionally specialized rostro-caudally, and to generalize features that may only be applicable to a specific segment and hence to a specific motor pool. While motoneurons share the same dorso-ventral origin and appear homogenous on a ChAT staining, specific clusters are dedicated to specific muscle groups, e.g., axial, hypaxial or limb muscles. Here, the authors make the important distinction between different lumbar levels and detail the location and connectivity of their neurons of interest with respect to specific clusters of MN.
Finally, the authors are fully transparent on inter-animal variability in their representation and quantification. This is crucial to avoid the overgeneralization of findings but to rather provide a nuanced understanding of the complexities of spinal circuits.
Weaknesses:
The current version of the paper is VERY hard to read. It is often extremely difficult to "see the forest for the trees" and the reader is often drowned in methodological details that provide only minor additions to the scientific message. Non-specialists in developmental biology, but still interested in the spinal cord organization, especially students, might find this article challenging to digest and there is a high risk that they will be inclined to abandon reading it. The diversity of developmental stages studied (with possible mistakes between text and figures) adds a substantial complexity in the reading. It is also not clear at all why authors choose to focus on the Foxp2 V1 from page 9. Naively, the Pou6f2 might have been equally interesting. Finally, numerous discrepancies in the referencing of figures must also be fixed. I strongly recommend an in-depth streamlining and proofreading, and possibly moving some material to supplement (e.g. page 8, and elsewhere).
Second, and although the different V1 populations have been investigated in detail regarding their development and positioning, their functional ambition is not directly investigated through gain or loss of function experiments. For the Foxp2-V1, the developmental and anatomical mapping is complemented by a connectivity mapping (Fig 6s, 8), but the latter is fairly superficial compared to the former. Synapses (Fig 6) are counted on a relatively small number of motoneurons per animal, that may, or may not, be representative of the population. Likewise, putative synaptic inputs are only counted on neuronal somata. Motoneurons that lack of axono-somatic contacts may still be contacted distally. Hence, while this data is still suggestive of differences between V1 pools, it is only little predictive of function.
Third, I suggest taking with caution the rabies labelling (Figure 8). It is known that this type of Rabies vectors, when delivered from the periphery, might also label sensory afferents and their post-synaptic targets in the cord through anterograde transport and transneuronal spread (e.g., Pimpinella et al., 2022). Yet I am not sure authors have made all controls to exclude that labelled neurons, presumed here to be premotoneurons, could rather be anterogradely labelled from sensory afferents.
Fourth, the ambition to differentiate neuronal birthdate at a half-day resolution (e.g., E10 vs E10.5) is interesting but must be considered with caution. As the author explains in their methods, animals are caged at 7pm, and the plug is checked the next morning at 7 am. There is hence a potential error of 12h.
Reviewer #3 (Public Review):
Building on their previous work that defined four major subgroups, or clades, of V1 interneurons largely by their transcriptional signatures, they do meticulous yet comprehensive analysis of the birth timing of V1 interneurons by clade, and even intra-clade, subtypes. This analysis establishes new relationships between the molecular identity, settling position, and birth time with extraordinary precision.
These relationships are then explored from the lens of synaptic connectivity. Focusing on the FoxP2 clade, they show tight spatial correspondence between V1 and motor neuron position, and through detailed synaptic analysis, find the FoxP2 V1 clade, as compared to Renshaw cells and other V1s, are the major contributors to V1-to-limb motor neuron connectivity. Finally, by analyzing sensory-to-V1 connectivity too, they show that the FoxP2 clade exhibits Ia-reciprocal interneuron-like convergence of proprioceptive and Renshaw cell synapses.
Taking the development and connectivity analysis together, their work substantially advances our understanding of spinal interneurons and yields fundamental basic information about how cell type heterogeneity corresponds across developmental, molecular and anatomical features.
An additional strength of this study is that they generate new genetic tools for labeling interneuron subpopulations, and provide insider knowledge into antibody, genetic and viral labeling that often get tucked under the rug, providing a very useful resource for further studies.
My only criticism is that some of the main messages of the paper are buried in technical details. Better separation of the main conclusions of the paper, which should be kept in the main figures and text, and technical details/experimental nuances, which are essential but should be moved to the supplement, is critical. This will also correct the other issue with the text at present, which is that it is too long.