Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorK VijayRaghavanNational Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Senior EditorK VijayRaghavanNational Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
Reviewer #1 (Public Review):
Summary:
The authors aim to measure the apoptotic fraction of motorneurons in developing zebrafish spinal cord to assess the extent of neuronal apoptosis during the development of a vertebrate embryo in an in vivo context.
Strengths:
The transgenic fish line tg (mnx1:sensor C3) appears to be a good reagent for motorneuron apoptosis studies, while further validation of its motorneuron specificity should be performed.
Weaknesses:
The results do not support the conclusions. The main "selling point" as summarized in the title is that the apoptotic rate of zebrafish motorneurons during development is strikingly low (~2% ) as compared to the much higher estimate (~50%) by previous studies in other systems. The results used to support the conclusion are that only a small percentage (under 2%) of apoptotic cells were found over a large population at a variety of stages 24-120hpf. This is fundamentally flawed logic, as a short-time window measure of percentage cannot represent the percentage in the long term. For example, at any year under 1% of the human population dies, but over 100 years >99% of the starting group will have died. To find the real percentage of motorneurons that died, the motorneurons born at different times must be tracked over the long term or the new motorneuron birth rate must be estimated.
A similar argument can be applied to the macrophage results. Here the authors probably want to discuss well-established mechanisms of apoptotic neuron clearance such as by glia and microglia cells.
The conclusion regarding the timing of axon and cell body caspase activation and apoptosis timing also has clear issues. The ~minutes measurement is too long as compared to the transport/diffusion timescale between the cell body and the axon, caspase activity could have been activated in the cell body, and either caspase or the cleaved sensor moves to the axon in several seconds. The authors' results are not high-frequency enough to resolve these dynamics
Many statements suggest oversight of literature, for example, in the abstract "However, there is still no real-time observation showing this dying process in live animals.".
Many statements should use more scholarly terms and descriptions from the spinal cord or motor neuron, neuromuscular development fields, such as line 87 "their axons converged into one bundle to extend into individual somite, which serves as a functional unit for the development and contraction of muscle cells"
The transgenic line is perhaps the most meaningful contribution to the field as the work stands. However, the mnx1 promoter is well known for its non-specific activation - while the images suggest the authors' line is good, motor neuron markers should be used to validate the line. This is especially important for assessing this population later as mnx1 may be turned off in mature neurons.
Overall, this work does not substantiate its biological conclusions and therefore does not advance the field. The transgenic line has the potential to address the questions raised but requires different sets of experiments. The line and the data as reported are useful on their own by providing a short-term rate of apoptosis of the motorneuron population.
Reviewer #2 (Public Review):
Summary:
Jia and colleagues developed a fluorescence resonance energy transfer (FRET)-based biosensor to study programmed cell death in the zebrafish spinal cord. They applied this tool to study the death of zebrafish spinal motor neurons.
Strengths:
Their analysis shows that the tool is a useful biosensor of motor neuron apoptosis in living zebrafish.
Weaknesses:
However, they have ignored significant literature describing the death of an identified zebrafish motor neuron, expression of the mnx gene in interneurons that are closely related to motor neurons, the increase in number of zebrafish motor neurons over developmental time, and potential differences between the limb-innervating motor neurons whose death has been characterized in chicks and rodents and the body wall-innervating motor neurons whose death they characterized using their biosensor. Thus, although their new tool is likely to be useful in the future, it does not provide new insights into zebrafish motor neuron programmed cell death.