Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorKiyoshi TakedaOsaka University, Osaka, Japan
- Senior EditorCarla RothlinYale University, New Haven, United States of America
Reviewer #1 (Public Review):
Here, using an organoid system, Wong et al generated a new model of hereditary diffuse leukoencephalopathy with axonal spheroids, with which they investigated how CSF1R-mutaions affect the phenotypes of microglia/macrophages, and revealed metabolic changes in microglia/macrophages associated with a proinflammatory phenotype.
In general, this paper is interesting and well-written, and tackles important issues to be addressed.
This study suffers from several major concerns and limitations that dampen the value of the study. As the authors also mentioned, models that perfectly recapitulate the complexity of the HDLS brain the models would be required to better understand the molecular mechanisms of the disease. In this regard, it is unclear how nicely the organoid system in this study can recapitulate the condition in patients with HDLS (e.g. reduced microglia density, downregulated expression of P2YR12, pathological alterations). In addition, the authors used two different models with distinct mutations that could produce different readouts in CSF1R-mediated cellular responses.
Although the reviewer does understand the importance of providing several options/tools to study rare diseases like HDLS and the difficulty of generating stable organoids with less variation, it is unclear if the different outcomes between HD1 and HD2 are generated through different mutations or simply due to different differentiation efficiency from iMacs (e.g. Figure 2B), which needs to be confirmed. Lastly, there is an over-interpretation regarding the results in Figure 6A. There is no difference between isoHD1 iMac control and HD1 Mut iMac.
Reviewer #2 (Public Review):
Summary:
This paper investigates a rare and severe brain disease called Hereditary Diffuse Leukoencephalopathy with Axonal Spheroids (HDLS). The authors aimed to understand how mutations in the gene CSF-1R affect microglia, the resident immune cells in the brain, and which alterations and factors lead to the specific pathophysiology. To model the human brain with the pathophysiology of HDLS, they used the human-specific model system of induced pluripotent stem cell (iPSC)-derived forebrain organoids with integrated iPSC-derived microglia (iMicro) from patients with the HDLS-causing mutation and an isogenic cell line with the corrected genome. They found that iPSC-derived macrophages (iMac) with HDLS mutations showed changes in their response, including increased inflammation and altered metabolism. Additionally, they studied these iMacs in forebrain organoids, where they differentiate into iMicro, and showed transcriptional differences in isolated iMicro when carrying the HDLS mutation. In addition, the authors described the influence of the mutation within iMicro on the transcriptional level of neurons and neural progenitor cells (NPCs) in the organoid. They observed that the one mutation showed implications for impaired development of neurons, possibly contributing to the progression of the disease.
Overall, this study provides valuable insights into the mechanisms underlying HDLS and emphasizes the importance of studying diseases like these with a suitable model system. These findings, while promising, represent only an initial step towards understanding HDLS and similar neurodegenerative diseases, and thus, their direct translation into new treatment options remains uncertain.
Strengths:
The strength of the work lies in the successful reprogramming of two HDLS patient-derived induced pluripotent stem cells (iPSCs) with different mutations, which is crucial for the study of HDLS using human forebrain organoid models. The use of corrected isogenic iPSC lines as controls increases the validity of the mutation-specific observations. In addition, the model effectively mimics HDLS, particularly concerning deficits in the frontal lobe, mirroring observations in the human brain. Obtaining iPSCs from patients with different CSF1R mutations is particularly valuable given the limitations of rodent and zebrafish models when studying adult-onset neurodegenerative diseases. The study also highlights significant metabolic changes associated with the CSF1R mutation, particularly in the HD2 mutant line, which is confirmed by the HD1 line. In addition, the work shows transcriptional upregulation of the proinflammatory cytokine IL-1beta in cells carrying the mutation, particularly when they phagocytose apoptotic cells, providing further insight into disease mechanisms.
Weaknesses:
The authors have not elucidated the significance of the increased CSF1 dosage in Figure 2F, aside from its effect on cell viability, lacking a thorough discussion of this result. Additionally, while transcriptomic and metabolic alterations related to the mutation were demonstrated in iMac models, similar investigations in iMicros are absent, necessitating further experiments to validate the findings across cell models. The conclusion drawn regarding cytokine levels lacks robust support from the data, particularly considering the varied responses observed in different mutant lines. Further analysis of the secretome (e.g. via ELISA) could provide additional insights. Moreover, the characterization of iMicros is incomplete, with limited protein-level analysis (e.g. validate RNA-seq via flow cytometry). Additionally, the claim of microglial-like morphology lacks adequate evidence, as the provided image is insufficient for such an assessment. RNA-seq experiments should be represented better, it is not possible to read the legends or gene names in the figures. Maybe the data sets can be combined into PCAone and one overall analysis, e.g. via WGCNA-like analyses? This would make it easier for the reader to compare the two cell lines side by side. Furthermore, inaccuracies and omissions in the figure legends compromise the clarity of data representation. Statistical test information is missing. Finally, inconsistent terminology usage throughout the paper may confuse readers (iMac versus iMicros).