Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJong-Eun ParkKorean Advanced Institute of Science and Technology, Daejeon, Korea, the Republic of
- Senior EditorMurim ChoiSeoul National University, Seoul, Korea, the Republic of
Reviewer #1 (Public review):
Summary:
In the manuscript titled "Benchmarking tRNA-Seq quantification approaches by realistic tRNA-Seq data simulation identifies two novel approaches with higher accuracy," Tom Smith and colleagues conducted a comparative evaluation of various sequencing-based tRNA quantification methods. The inherent challenges in accurately quantifying tRNA transcriptional levels, stemming from their short sequences (70-100nt), extensive redundancy (~600 copies in human genomes with numerous isoacceptors and isodecoders), and potential for over 100 post-transcriptional chemical modifications, necessitate sophisticated approaches. Several wet-experimental methods (QuantM-tRNA, mim-tRNA, YAMAT, DM-tRNA, and ALL-tRNA) combined with bioinformatics tools (bowtie2-based, SHRiMP, and mimseq) have been proposed for this purpose. However, their practical strengths and weaknesses have not been comprehensively explored to date. In this study, the authors systematically assessed and compared these methods, considering factors such as incorrect alignments, multiple alignments, misincorporated bases (experimental errors), truncated reads, and correct assignments. Additionally, the authors introduced their own bioinformatic approaches (referred to as Decision and Salmon), which, while not without flaws (as perfection is unattainable), exhibit significant improvements over existing methods.
Strengths:
The manuscript meticulously compares tRNA quantification methods, offering a comprehensive exploration of each method's relative performance using standardized evaluation criteria. Recognizing the absence of "ground-truth" data, the authors generated in silico datasets mirroring common error profiles observed in real tRNA-seq data. Through the utilization of these datasets, the authors gained insights into prevalent sources of tRNA read misalignment and their implications for accurate quantification. Lastly, the authors proposed their own downstream analysis pipelines (Salmon and Decision), enhancing the manuscript's utility.
Reviewer #2 (Public review):
Summary:
The authors provided benchmarking study results on tRNA-seq in terms of read alignment and quantification software with optimal parameterization. This result can be a useful guideline for choosing optimal parameters for tRNA-seq read alignment and quantification.
Strengths:
Benchmarking results for read alignment can be a useful guideline for choosing optimal parameters and mapping strategy (mapping to amino acid) for various tRNAseq.
Weaknesses:
Some explanation on sequencing data analysis pipeline is not clear for general readers.