Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJonas ObleserUniversity of Lübeck, Lübeck, Germany
- Senior EditorMichael FrankBrown University, Providence, United States of America
Reviewer #1 (Public Review):
The study by Chikermane and colleagues investigates the functional, structural, and dopaminergic network substrates of cortical beta oscillations (13-30 Hz). The major strength of the work lies in the methodology taken by the authors, namely a multimodal lesion network mapping. First, using invasive electrophysiological recordings from healthy cortical territories of epileptic patients they identify regions with the highest beta power. Next, they leverage open-access MRI data and PET atlases and use the identified high-beta regions as seeds to find (1) the whole-brain functional and structural maps of regions that form the putative underlying network of high-beta regions and (2) the spatial distribution of dopaminergic receptors that show correlation with nodal connectivity of the identified networks. These steps are achieved by generating aggregate functional, structural, and dopaminergic network maps using lead-DBS toolbox, and by contrasting the results with those obtained from high-alpha regions.
The main findings are:
(1) Beta power is strongest across frontal, cingulate, and insular regions in invasive electrophysiological data, and these regions map onto a shared functional and structural network.
(2) The shared functional and structural networks show significant positive correlations with dopamine receptors across the cortex and basal ganglia (which is not the case for alpha, where correlations are found with GABA).
Nevertheless, a few clarifications regarding the choice of high-power electrodes and distributions of functional connectivity maps (i.e., strength and sign across cortex and sub-cortex) can help with understanding the results.
Reviewer #2 (Public Review):
Summary:
This is a very interesting paper that leveraged several publicly available datasets: invasive cortical recording in epilepsy patients, functional and structural connectomic data, and PET data related to dopaminergic and gaba-ergic synapses. These were combined to create a unified hypothesis of beta band oscillatory activity in the human brain. They show that beta frequency activity is ubiquitous, not just in sensorimotor areas, and cortical regions where beta predominated had high connectivity to regions high in dopamine re-update.
Strengths:
The authors leverage and integrate three publicly available human brain datasets in a creative way. While these public datasets are powerful tools for human neuroscience, it is innovative to combine these three types of data into a common brain space to generate novel findings and hypotheses. Findings are nicely controlled by separately examining cortical regions where alpha predominates (which have a different connectivity pattern). GABA uptake from PET studies is used as a control for the specificity of the relationship between beta activity and dopamine uptake. There is much interest in synchronized oscillatory activity as a mechanism of brain function and dysfunction, but the field is short on unifying hypotheses of why particular rhythms predominate in particular regions. This paper contributes nicely to that gap. It is ambitious in generating hypotheses, particularly that modulation of beta activity may be used as a "proxy" for modulating phasic dopamine release.
Weaknesses:
As the authors point out, the use of normative data is excellent for exploring hypotheses but does not address or explore individual variations which could lead to other insights. It is also biased to resting state activity; maps of task-related activity (if they were available) might show different findings.
The figures, results, introduction, and methods are admirably clear and succinct but the discussion could be both shorter and more convincing.
Reviewer #3 (Public Review):
Summary:
In this paper, Chikermane et al. leverages a large open dataset of intracranial recordings (sEEG or ECoG) to analyze resting state (eyes closed) oscillatory activity from a variety of human brain areas. The authors identify a dominant proportion of channels in which beta band activity (12-30Hz) is most prominent and subsequently seek to relate this to anatomical connectivity data by using the sEEG/ECoG electrodes as seeds in a large set of MRI data from the human connectome project. This reveals separate regions and white matter tracts for alpha (primarily occipital) and beta (prefrontal cortex and basal ganglia) oscillations. Finally, using a third available dataset of PET imaging, the authors relate the parcellated signals to dopamine signaling as estimated by spatial uptake patterns of dopamine, and reveal a significant correlation between the functional connectivity maps and the dopamine reuptake maps, suggesting a functional relationship between the two.
Strengths:
Overall, I found the paper well justified, focused on an important topic, and interesting. The authors' use of 3 different open datasets was creative and informative, and it significantly adds to our understanding of different oscillatory networks in the human brain, and their more elusive relation with neuromodulator signaling networks by adding to our knowledge of the association between beta oscillations and dopamine signaling. Even my main comments about the lack of a theta network analysis and discussion points are relatively minor, and I believe this paper is valuable and informative.
Weaknesses:
The analyses were adequate, and the authors cleverly leveraged these different datasets to build an interesting story. The main aspect I found missing (in addition to some discussion items, see below) was an examination of the theta network. Theta oscillations have been involved in a number of cognitive processes including spatial navigation and memory, and have been proposed to have different potential originating brain regions, and it would be informative to see how their anatomical networks (e.g. as in Figure 2) look like under the author's analyses.
The authors devote a significant portion of the discussion to relating their findings to a popular hypothesis for the function of beta oscillations, the maintenance of the "status quo", mostly in the context of motor control. As the authors acknowledge, given the static nature of the data and lack of behavior, this interpretation remains largely speculative and I found it a bit too far-reaching given the data shown in the paper. In contrast, I missed a more detailed discussion on the growing literature indicating a role for beta in mood (e.g. in Kirkby et al. 2018), especially given the apparent lack of hippocampal and amygdala involvement in the paper, which was surprising.
Major comment:
• Although the proportion of electrodes with theta-dominant oscillations was lower (~15%) than alpha (~22%) or beta (~57%), it would be very valuable to also see the same analyses the authors carried out in these frequency bands extended to theta oscillations.