Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorNicolás PírezUniversidad de Buenos Aires - CONICET, Buenos Aires, Argentina
- Senior EditorAlbert CardonaUniversity of Cambridge, Cambridge, United Kingdom
Reviewer #1 (Public review):
Summary:
The authors comprehensively present data from single cell RNA sequencing and spatial transcriptomics experiments of the juvenile male and female mouse vomeronasal organ, with a particular emphasis on the neuronal populations found in this sensory tissue. The use of these two methods effectively maps the locations of relevant cell types in the vomeronasal organ at a level of depth beyond what is currently known. Targeted analysis of the neurons in the vomeronasal organ produced several important findings, notably the common co-expression of multiple vomeronasal type 1 receptors (V1Rs), vomeronasal type 2 receptors (V2Rs), and both V1R+V2Rs by individual neurons, as well as the presence of a small but noteworthy population of neurons expressing olfactory receptors (ORs) and associated signal transduction molecules. Additionally, the authors identify transcriptional patterns associated with neuronal development/maturation, producing lists of genes that can be used and/or further investigated by the field. Finally, the authors report the presence of coordinated combinatorial expression of transcription factors and axon guidance molecules associated with multiple neuronal types, providing the framework for future studies aimed at understanding how these patterns relate to the complex glomerular organization in the accessory olfactory bulb. Several of these conclusions have been reached by previous studies, partially limiting the overall impact of the current work. However, when combined, these results provide important insights into the cellular diversity in the vomeronasal organ that are likely to support multiple future studies of the vomeronasal system.
Strengths:
The comprehensive analysis of the data provides a wealth of information for future research into vomeronasal organ function. The targeted analysis of neuronal gene transcription demonstrates the co-expression of multiple receptors by individual neurons, and confirms the presence of a population of OR-expressing neurons in the vomeronasal organ. Although many of these findings have been noted by others, the depth of analysis here validates and extends prior findings in an effective manner. The use of spatial transcriptomics to identify the locations of specific cell types is especially useful and produces a template for the field's continued research into the various cell types present in this complex sensory tissue. Overall, the manuscript's biggest strength is found in the richness of the data presented, which will not only support future work in the broader field of vomeronasal system function but also provide insights into others studying complex sensory tissues.
Weaknesses:
The inherent weaknesses of single cell RNA sequencing studies based on the 10x Genomics platforms (need to dissociate tissues, limited depth of sequencing, etc.) is acknowledged. However, the authors document their extensive attempts to avoid making false positive conclusions through the use of software tools designed for this purpose. Because of its complexity, there are some portions of the manuscript where the data are difficult to interpret as presented, but this is a relatively minor weakness. The data resulting from the use of the Resolve Biosciences spatial transcriptomics platform are somewhat difficult to interpret because the methods are proprietary and presented in an opaque manner. That said, the resulting data provide useful links between transcriptional identities and cellular locations, which is not possible without the use of such tools.
Reviewer #2 (Public review):
In their paper entitled "Molecular, Cellular, and Developmental Organization of the Mouse Vomeronasal Organ at Single Cell Resolution" Hills Jr. et al. perform single-cell transcriptomic profiling and analyze tissue distribution of a large number of transcripts in the mouse vomeronasal organ (VNO). The use of these complementary tools provides a robust approach to investigating many aspects of vomeronasal sensory neuron (VSN) biology based on transcriptomics. Harnessing the power of these techniques, the authors present the discovery of previously unidentified sensory neuron types in the mouse VNO. Furthermore, they report co-expression of chemosensory receptors from different clades on individual neurons, including the co-expression of VR and OR. Finally, they evaluated the correlation between transcription factor expression and putative surface axon guidance molecules during the development of different neuronal lineages. Based on such correlation analysis, authors further propose a putative cascade of events that could give rise to different neuronal lineages and morphological organization.
We appreciate the authors' efforts to add context and citations that relate to recent single cell RNA sequencing studies in the VNO as well as to studies on vomeronasal receptors co-expression and V1R/V2R lineage determination. We also appreciate the new details on the marker genes used for cell annotation as well as clarifications about the differences between juvenile versus adult or male versus female samples.
A concern still remaining is that two major claims/interpretations - i.e., identification of canonical OSNs and a novel type sVSNs in the mouse VNO - either require experimental substantiation or the authors' claims should be toned down. In their response, Hills Jr. et al. acknowledge that their "paper is primarily intended as a resource paper to provide access to a large-scale single-cell RNA-sequenced dataset and discoveries based on the transcriptomic data that can support and inspire ongoing and future experiments in the field." The authors also write that given "the limited number of genes that we can probe using Molecular Cartography, the number of genes associated with sVSNs may be present in the non-sensory epithelium. This could lead to the identification of cells that may or may not be identical to the sVSNs in the non-neuronal epithelium. Indeed, further studies will need to be conducted to determine the specificity of these cells." Moreover, Hills Jr. et al. acknowledge that as "any transcriptomic study will only be correlative, additional studies will be needed to unequivocally determine the mechanistic link between the transcription factors with receptor choice. Our model provides a basis for these studies." We agree with all these points. Importantly, in the revised manuscript, the authors do not acknowledge that their primary intention is to present "a resource paper to provide access to a large-scale single-cell RNA-sequenced dataset", nor do they acknowledge any of the other caveats/limitations mentioned above. We believe that the authors should not only mention these aspects in their response to the reviews, but they should also make these intentions/caveats/limitations very clear in the manuscript text.
Reviewer #3 (Public review):
This study presents a detailed examination of the molecular and cellular organization of the mouse VNO, unveiling new cell types, receptor co-expression patterns, lineage specification regulation, and potential associations between transcription factors, guidance molecules, and receptor types crucial for vomeronasal circuitry wiring specificity. The study identifies a novel type of VSN molecularly different from classic VSNs, which may serve as accessory to other VSNs by secreting olfactory binding proteins and mucins in response to VNO activation. They also describe a previously undetected co-expression of multiple VRs in individual VSNs, providing an interesting view to the ongoing discussion on how receptor choice occurs in VSNs, either stochastic or deterministic. Finally, the study correlates the expression of axon guidance molecules associated with individual VRs, providing a putative molecular mechanism that specifies VSN axon projections and their connection with postsynaptic cells in the accessory olfactory bulb.
The conclusions of this paper are well supported by data, but some aspects of data analysis and acquisition need to be clarified and extended.
(1) The authors claim that they have identified two new classes of sensory neurons, one being a class of canonical olfactory sensory neurons (OSNs) within the VNO. This classification as canonical OSNs is based on expression data of neurons lacking the V1R or V2R markers but instead expressing ORs and signal transduction molecules, such as Gnal and Cnga2. Since OR-expressing neurons in the VNO have been previously described in many studies, it remains unclear to me why these OR-expressing cells are considered here a "new class of OSNs." Moreover, morphological features, including the presence of cilia, and functional data demonstrating the recognition of chemosignals by these neurons, are still lacking to classify these cells as OSNs akin to those present in the MOE. While these cells do express canonical markers of OSNs, they also appear to express other VSN-typical markers, such as Gnao1 and Gnai2 (Fig 2B), which are less commonly expressed by OSNs in the MOE. Therefore, it would be more precise to characterize this population as atypical VSNs that express ORs, rather than canonical OSNs.
(2) The second new class of sensory neurons identified corresponds to a group of VSNs expressing prototypical VSN markers (including V1Rs, V2Rs, and ORs), but exhibiting lower ribosomal gene expression. Clustering analysis reveals that this cell group is relatively isolated from V1R- and V2R-expressing clusters, particularly those comprising immature VSNs. The question then arises: where do these cells originate? Considering their fewer overall genes and lower total counts compared to mature VSNs, I wonder if these cells might represent regular VSNs in a later developmental stage, i.e., senescent VSNs. While the secretory cell hypothesis is compelling and supported by solid data, it could also align with a late developmental stage scenario. Further data supporting or excluding these hypotheses would aid in understanding the nature of this new cell cluster, with a comparison between juvenile and adult subjects appearing particularly relevant in this context.
(3) The authors' decision not to segregate the samples according to sex is understandable, especially considering previous bulk transcriptomic and functional studies supporting this approach. However, many of the highly expressed VR genes identified have been implicated in detecting sex-specific pheromones and triggering dimorphic behavior. It would be intriguing to investigate whether this lack of sex differences in VR expression persists at the single-cell level. Regardless of the outcome, understanding the presence or absence of major dimorphic changes would hold broad interest in the chemosensory field, offering insights into the regulation of dimorphic pheromone-induced behavior. Additionally, it could provide further support for proposed mechanisms of VR receptor choice in VSNs.
(4) The expression analysis of VRs and ORs seems to have been restricted to the cell clusters associated to the neuronal lineage. Are VRs/ORs expressed in other cell types, i.e. sustentacular, HBC or other cells?
Review update:
I believe the novel discovery of two classes of sensory neurons within the VNO-canonical olfactory sensory neurons (OSNs) and secretory vomeronasal sensory neurons (sVSNs)-should be interpreted with caution. Firstly, these cell types are relatively rare, constituting less than 2% of total cells and only 2-6% of the neuronal population (according to Fig. S3). While the OSNs exhibit gene expression profiles consistent with canonical olfactory signal transduction and cilia-related gene ontology, key aspects such as their cell morphology (including the presence of cilia) and functional evidence for chemosignal detection have yet to be demonstrated. The neuronal lineage of sVSNs remains unclear to me. It is uncertain what developmental trajectories these cells follow: do they arise as a specialized subtype of V1R or V2R lineages, or do they have an independent lineage determination, similar to OSNs? At what stage does the commitment to the sVSN lineage begin-during the INP stage or the immature sensory neuron stage? A pseudotime inference analysis of sVSNs could help clarify these questions.