Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorNicolás PírezUniversidad de Buenos Aires - CONICET, Buenos Aires, Argentina
- Senior EditorAlbert CardonaUniversity of Cambridge, Cambridge, United Kingdom
Reviewer #1 (Public Review):
Summary:
The authors comprehensively present data from single-cell RNA sequencing and spatial transcriptomics experiments of the juvenile male and female mouse vomeronasal organ, with a particular emphasis on the neuronal populations found in this sensory tissue. The use of these two methods effectively maps the locations of relevant cell types in the vomeronasal organ at a level of depth beyond what is currently known. Targeted analysis of the neurons in the vomeronasal organ produced several important findings, notably the common co-expression of multiple vomeronasal type 1 receptors (V1Rs), vomeronasal type 2 receptors (V2Rs), and both V1R+V2Rs by individual neurons, as well as the presence of a small but noteworthy population of neurons expressing olfactory receptors (ORs) and associated signal transduction molecules. Additionally, the authors identify transcriptional patterns associated with neuronal development/maturation, producing lists of genes that can be used and/or further investigated by the field. Finally, the authors report the presence of coordinated combinatorial expression of transcription factors and axon guidance molecules associated with multiple neuronal types, providing the framework for future studies aimed at understanding how these patterns relate to the complex glomerular organization in the accessory olfactory bulb. Several of these conclusions have been reached by previous studies, partially limiting the overall impact of the current work. However, when combined, these results provide important insights into the cellular diversity in the vomeronasal organ that are likely to support multiple future studies of the vomeronasal system.
Strengths:
The comprehensive analysis of the data provides a wealth of information for future research into vomeronasal organ function. The targeted analysis of neuronal gene transcription demonstrates the co-expression of multiple receptors by individual neurons and confirms the presence of a population of OR-expressing neurons in the vomeronasal organ. Although many of these findings have been noted by others, the depth of analysis here validates and extends prior findings in an effective manner. The use of spatial transcriptomics to identify the locations of specific cell types is especially useful and produces a template for the field's continued research into the various cell types present in this complex sensory tissue. Overall, the manuscript's biggest strength is found in the richness of the data presented, which will not only support future work in the broader field of vomeronasal system function but also provide insights into others studying complex sensory tissues.
Weaknesses:
As noted above, several previous studies have identified co-expression of vomeronasal receptors by vomeronasal sensory neurons, and the expression of non-vomeronasal receptors, and this was not adequately addressed in the manuscript as presented. The inherent weaknesses of single-cell RNA sequencing studies based on the 10x Genomics platforms (need to dissociate tissues, limited depth of sequencing, etc.) are acknowledged. However, the authors document their extensive attempts to avoid making false positive conclusions through the use of software tools designed for this purpose. Because of its complexity, there are some portions of the manuscript where the data are difficult to interpret as presented, but this is a relatively minor weakness. The data resulting from the use of the Resolve Biosciences spatial transcriptomics platform are somewhat difficult to interpret, and the methods are somewhat opaque. That said, the resulting data provide useful links between transcriptional identities and cellular locations, which is not possible without the use of such tools.
Reviewer #2 (Public Review):
In their paper entitled "Molecular, Cellular, and Developmental Organization of the Mouse Vomeronasal Organ at Single Cell Resolution" Hills Jr. et al. perform single-cell transcriptomic profiling and analyze tissue distribution of a large number of transcripts in the mouse vomeronasal organ (VNO). The use of these complementary tools provides a robust approach to investigating many aspects of vomeronasal sensory neuron (VSN) biology based on transcriptomics. Harnessing the power of these techniques, the authors present the discovery of previously unidentified sensory neuron types in the mouse VNO. Furthermore, they report co-expression of chemosensory receptors from different clades on individual neurons, including the co-expression of VR and OR. Finally, they evaluated the correlation between transcription factor expression and putative surface axon guidance molecules during the development of different neuronal lineages. Based on such correlation analysis, authors further propose a putative cascade of events that could give rise to different neuronal lineages and morphological organization.
Taken together, Hills Jr. et al. present findings on (a) cell types in the VNO, (b) novel classes of sensory neurons, (c) developmental trajectories of the neuronal linage, (d) receptor expression in VSNs, (e) co-expression of chemosensory receptors, (f) a surface molecule code for individual receptor types, and (g) transcriptional regulation of receptor and axon guidance cues. Before outlining the major strengths and weaknesses of the manuscript, we need to disclose that, while we are comfortable reviewing aspects (a) to (e) of their work, we lack the expertise to provide constructive criticism on the two last points (f) and (g). Thus, we will not comment on these.
In general, interpretations/claims put forward by Hills Jr. et al. appear striking at first glance. Upon careful review of the manuscript, however, it becomes apparent that many of the groundbreaking discoveries lack compelling support. Several (not all) of the results presented in this work lack novelty, accurate interpretability, and corroboration. A recurrent theme throughout the manuscript is an incomplete, and somewhat misleading account of the current knowledge in the field. This is perhaps most apparent in the introductory paragraphs, where the authors present a biased report of previously published work, largely including only those results that do not overlap with their own findings, but ignoring results that would question the novelty of the data presented here. For example: "...In contrast, transcriptomic information of the VNO is rather limited (Ref 24,25)...". Indeed, transcriptomic information of the mouse VNO is limited. Here, however, the authors ignore recent reports of robust single-cell transcriptomic analysis from adult and juvenile mice. These papers are, in part, cited later in this manuscript (ref 88, 89, 90, 91), or are completely missing (doi.org/10.7554/eLife.77259). Regardless, previously published results on the same topics have to be included in the Introduction to put the background and novelty of the findings into perspective.
General comments on (a) cell types in the VNO
The authors performed single-cell transcriptomic analysis of a large number of cells from both adult and juvenile VNO, creating the largest dataset of its kind to date. This dataset contains a wealth of information and, once made public, could be a valuable resource to the community. However, the analysis implemented in this paper raises several questions:
Did the authors perform any cell selectivity, or any directed dissection, to obtain mainly neuronal cells? Previous studies reported a greater proportion of non-neuronal cells. For example, while Katreddi and co-workers (ref 89) found that the most populated clusters are identified as basal cells, macrophages, pericytes, and vascular smooth muscle, Hills Jr. et al. in this work did not report such types of cells. Did the authors check for the expression of marker genes listed in Ref 89 for such cell types?
The authors should report the marker genes used for cell annotation. This is important for data validation, comparison with other publicly available datasets, as well as future use of this dataset.
The authors reported no differences between juvenile and adult samples, and between male and female samples. It is not clear how they evaluate statistically significant differences, which statistical test was used, or what parameters were evaluated.
"Based on our transcriptomic analysis, we conclude that neurogenic activity is restricted to the marginal zone." This conclusion is quite a strong statement, given that this study was not directed to carefully study neurogenesis distribution, and when neurogenesis in the basal zone has been proposed by other works, as stated by the authors.
General comments on (b) novel classes of sensory neurons
The authors report at least two new types of sensory neurons in the mouse VNO, a finding of huge importance that could have a substantial impact on the field of sensory physiology. However, the evidence for such new cell types is based solely on this transcriptomic dataset and, as such, is quite weak, since many crucial morphological and physiological aspects would be missing to clearly identify them as novel cell types. As stated before, many control and confirmatory experiments, and a careful evaluation of the results presented in this work must be performed to confirm such a novel and interesting discovery. The reported "novel classes of sensory neurons" in this work could represent previously undescribed types of sensory neurons, but also previously reported cells (see below) or simply possible single-cell sequencing artefacts.
The authors report the co-expression of V2R and Gnai2 transcripts based on sequencing data. That could dramatically change classical classifications of basal and apical VSNs. However, did the authors find support for this co-expression in spatial molecular imaging experiments?
Canonical OSNs: The authors report a cluster of cells expressing neuronal markers and ORs and call them canonical OSN. However, VSNs expressing ORs have already been reported in a detailed study showing their morphology and location inside the sensory epithelium (References 82, 83). Such cells are not canonical OSNs since they do not show ciliary processes, they express TRPC2 channels and do not express Golf. Are the "canonical OSNs" reported in this study and the OR-expressing VSNs (ref 82, 83) different? Which parameters, other than Gnal and Cnga2 expression, support the authors' bold claim that these are "canonical OSNs"? What is the morphology of these neurons? In addition, the mapping of these "canonical OSNs" shown in Figure 2D paints a picture of the negligible expression/role of these cells (see their prediction confidence).
Secretory VSN: The authors report another novel type of sensory neurons in the VNO and call them "secretory VSNs". Here, the authors performed an analysis of differentially expressed genes for neuronal cells (dataset 2) and found several differentially expressed genes in the sVSN cluster. However, it would be interesting to perform a gene expression analysis using the whole dataset including neuronal and non-neuronal cells. Could the authors find any marker gene that unequivocally identifies this new cell type?
When the authors evaluated the distribution of sVSN using the Molecular Cartography technique, they found expression of sVSN in both sensory and non-sensory epithelia. How do the authors explain such unexpected expression of sensory neurons in the non-sensory epithelium?
The low total genes count and low total reads count, combined with an "expression of marker genes for several cell types" could indicate low-quality beads (contamination) that were not excluded with the initial parameter setting. It looks like cells in this cluster express a bit of everything V1R, V2R, OR, secretory proteins...
General comments on (c) developmental trajectories of the neuronal linage
The authors evaluated a possible cascade of events leading to the development of different lineages of mature sensory neurons using GBCs as a starting point. They found the differential expression of several transcription factors at different stages of development. This analysis was performed correctly, and its interpretation is coherent. However, it is mysterious why the authors included only classical V1R and V2R-expressing neurons, while the novel sensory neurons, cOSN and sVSN, were not included. Furthermore, it is important to notice again the misreport of previously published works.
The authors wrote "...the transcriptomic landscape that specifies the lineages is not known...". This statement is not completely true, or at least misleading. There are still many undiscovered aspects of the transcriptomics landscape and lineage determination in VSNs. However, authors cannot ignore previously reported data showing the landscape of neuronal lineages in VSNs (Ref ref 88, 89, 90, 91 and doi.org/10.7554/eLife.77259). Expression of most of the transcription factors reported by this study (Ascl1, Sox2, Neurog1, Neurod1...) were already reported, and for some of them, their role was investigated, during early developmental stages of VSNs (Ref ref 88, 89, 90, 91 and doi.org/10.7554/eLife.77259). In summary, the authors should fully include the findings from previous works (Ref ref 88, 89, 90, 91 and doi.org/10.7554/eLife.77259), clearly state what has been already reported, what is contradictory and what is new when compared with the results from this work.
General comments on (d) receptor expression in VSNs
The authors evaluated the expression of chemosensory receptors in the VNO and correlated receptor expression with the expression of transcription factors. The analysis of such correlation showed that, while the expression of V1Rs is mainly correlated with the expression of the transcription factor Meis2, the expression of V2Rs is correlated with the combination of many transcription factors. These results are interesting, however, the co-expression of specific V2Rs with specific transcription factors does not imply a direct implication in receptor selection. Directed experiments to evaluate the VR expression dependent on a specific transcription factor must be performed.
This study reports that transcription factors, such as Pou2f1, Atf5, Egr1, or c-Fos could be associated with receptor choice in VSNs. However, no further evidence is shown to support this interaction. Based on these purely correlative data, it is rather bold to propose cascade model(s) of lineage consolidation.
General comments on (e) co-expression of chemosensory receptors
The authors use spatial molecular imaging to evaluate the co-expression of many chemosensory receptors in single VNO cells. Molecular Cartography is a powerful tool and the reported data in this work is truly interesting. The authors show some clear confirmation of previously reported V2R co-expression (Figure 5H), and new co-expression of chemosensory receptors including V1R, V2R, and Fpr (Figure 5G-K).
However, it is difficult to evaluate and interpret the results due to the lack of cell borders in spatial molecular imaging. The inclusion of cell border delimitation in the reported images (membrane-stained or computer-based) could be tremendously beneficial for the interpretation of the results.
It is surprising that the authors reported a new cell type expressing OR, however, they did not report the expression of ORs in Molecular Cartography technique. Did the authors evaluate the expression of OR using the cartography technique?
Reviewer #3 (Public Review):
This study presents a detailed examination of the molecular and cellular organization of the mouse VNO, unveiling new cell types, receptor co-expression patterns, lineage specification regulation, and potential associations between transcription factors, guidance molecules, and receptor types crucial for vomeronasal circuitry wiring specificity. The study identifies a novel type of VSN molecularly different from classic VSNs, which may serve as an accessory to other VSNs by secreting olfactory binding proteins and mucins in response to VNO activation. They also describe a previously undetected co-expression of multiple VRs in individual VSNs, providing an interesting view of the ongoing discussion on how receptor choice occurs in VSNs, either stochastic or deterministic. Finally, the study correlates the expression of axon guidance molecules associated with individual VRs, providing a putative molecular mechanism that specifies VSN axon projections and their connection with postsynaptic cells in the accessory olfactory bulb.
The conclusions of this paper are well supported by data, but some aspects of data analysis and acquisition need to be clarified and extended.
(1) The authors claim that they have identified two new classes of sensory neurons, one being a class of canonical olfactory sensory neurons (OSNs) within the VNO. This classification as canonical OSNs is based on expression data of neurons lacking the V1R or V2R markers but instead expressing ORs and signal transduction molecules, such as Gnal and Cnga2. Since OR-expressing neurons in the VNO have been previously described in many studies, it remains unclear to me why these OR-expressing cells are considered here a "new class of OSNs." Moreover, morphological features, including the presence of cilia, and functional data demonstrating the recognition of chemosignals by these neurons, are still lacking to classify these cells as OSNs akin to those present in the MOE. While these cells do express canonical markers of OSNs, they also appear to express other VSN-typical markers, such as Gnao1 and Gnai2 (Figure 2B), which are less commonly expressed by OSNs in the MOE. Therefore, it would be more precise to characterize this population as atypical VSNs that express ORs, rather than canonical OSNs.
(2) The second new class of sensory neurons identified corresponds to a group of VSNs expressing prototypical VSN markers (including V1Rs, V2Rs, and ORs), but exhibiting lower ribosomal gene expression. Clustering analysis reveals that this cell group is relatively isolated from V1R- and V2R-expressing clusters, particularly those comprising immature VSNs. The question then arises: where do these cells originate? Considering their fewer overall genes and lower total counts compared to mature VSNs, I wonder if these cells might represent regular VSNs in a later developmental stage, i.e., senescent VSNs. While the secretory cell hypothesis is compelling and supported by solid data, it could also align with a late developmental stage scenario. Further data supporting or excluding these hypotheses would aid in understanding the nature of this new cell cluster, with a comparison between juvenile and adult subjects appearing particularly relevant in this context.
(3) The authors' decision not to segregate the samples according to sex is understandable, especially considering previous bulk transcriptomic and functional studies supporting this approach. However, many of the highly expressed VR genes identified have been implicated in detecting sex-specific pheromones and triggering dimorphic behavior. It would be intriguing to investigate whether this lack of sex differences in VR expression persists at the single-cell level. Regardless of the outcome, understanding the presence or absence of major dimorphic changes would hold broad interest in the chemosensory field, offering insights into the regulation of dimorphic pheromone-induced behavior. Additionally, it could provide further support for proposed mechanisms of VR receptor choice in VSNs.
(4) The expression analysis of VRs and ORs seems to have been restricted to the cell clusters associated with the neuronal lineage. Are VRs/ORs expressed in other cell types, i.e. sustentacular, HBC, or other cells?