High-content high-resolution microscopy and deep learning assisted analysis reveals host and bacterial heterogeneity during Shigella infection

  1. Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Ethel Bayer-Santos
    The University of Texas at Austin, Austin, United States of America
  • Senior Editor
    Wendy Garrett
    Harvard T.H. Chan School of Public Health, Boston, United States of America

Reviewer #1 (Public Review):

Summary:

In this study, López-Jiménez and colleagues demonstrated the utility of using high-content microscopy in dissecting host and bacterial determinants that play a role in the establishment of infection using Shigella flexneri as a model. The manuscript nicely identifies that infection with Shigella results in a block to DNA replication and protein synthesis. At the same time, the host responds, in part, via the entrapment of Shigella in septin cages.

Strengths:

The main strength of this manuscript is its technical aspects. They nicely demonstrate how an automated microscopy pipeline coupled with artificial intelligence can be used to gain new insights regarding elements of bacterial pathogenesis, using Shigella flexneri as a model system. Using this pipeline enabled the investigators to enhance the field's general understanding regarding the role of septin cages in responding to invading Shigella. This platform should be of interest to those who study a variety of intracellular microbial pathogens.

Another strength of the manuscript is the demonstration - using cell biology-based approaches- that infection with Shigella blocks DNA replication and protein synthesis. These observations nicely dovetail with the prior findings of other groups. Nevertheless, their clever click-chemistry-based approaches provide visual evidence of these phenomena and should interest many.

Weaknesses:

There are two main weaknesses of this work. First, the studies are limited to findings obtained using a single immortalized cell line. It is appreciated that HeLa cells serve as an excellent model for studying aspects of Shigella pathogenesis and host responses. However, it would be nice to see that similar observations are observed with an epithelial cell line of intestinal, preferably colonic origin, and eventually, with a non-immortalized cell line, although it is appreciated that the latter studies are beyond the scope of this work.

The other weakness is that the studies are minimally mechanistic. For example, the investigators have data to suggest that infection with Shigella leads to an arrest in DNA replication and protein synthesis; however, no follow-up studies have been conducted to determine how these host cell processes are disabled. Interestingly, Zhang and colleagues recently identified that the Shigella OspC effectors target eukaryotic translation initiation factor 3 to block host cell translation (PMID: 38368608). This paper should be discussed and cited in the discussion.

Reviewer #2 (Public Review):

Summary:

Septin caging has emerged as one of the innate immune responses of eukaryotic cells to infections by intracellular bacteria. This fascinating assembly of eukaryotic proteins into complex structures restricts bacteria motility within the cytoplasm of host cells, thereby facilitating recognition by cytosolic sensors and components of the autophagy machinery. Given the different types of septin caging that have been described thus far, a single-cell, unbiased approach to quantify and characterise septin recruitment at bacteria is important to fully grasp the role and function of caging. Thus, the authors have developed an automated image analysis pipeline allowing bacterial segmentation and classification of septin cages that will be very useful in the future, applied to study the role of host and bacterial factors, compare different bacterial strains, or even compare infections by clinical isolates.

Strengths:

The authors developed a solid pipeline that has been thoroughly validated. When tested on infected cells, automated analysis corroborated previous observations and allowed the unbiased quantification of the different types of septin cages as well as the correlation between caging and bacterial metabolic activity. This approach will prove an essential asset in the further characterisation of septin cages for future studies.

Weaknesses:

As the main aim of the manuscript is to describe the newly developed analysis pipeline, the results illustrated in the manuscript are essentially descriptive. The developed pipeline seems exceptionally efficient in recognising septin cages in infected cells but its application for a broader purpose or field of study remains limited.

Reviewer #3 (Public Review):

Summary:

The manuscript uses high-content imaging and advanced image-analysis tools to monitor the infection of epithelial cells by Shigella. They perform some analysis on the state of the cells (through measurements of DNA and protein synthesis), and then they focus on differential recruitment of Sept7 to the bacteria. They link this recruitment with the activity of the bacterial T3SS, which is a very interesting discovery. Overall, I found numerous exciting elements in this manuscript, and I have a couple of reservations. Please see below for more details on my reservations. Nevertheless, I think that these issues can be addressed by the authors, and doing so will help to make it a convincing and interesting piece for the community working on intracellular pathogens. The authors should also carefully re-edit their manuscript to avoid overselling their data (see below for issues I see there). I would consider taking out the first figure and starting with Figure 3 (Figure 2 could be re-organized in the later parts)- that could help to make the flow of the manuscript better.

Strengths:

The high-content analysis including the innovative analytical workflows are very promising and could be used by a large number of scientists working on intracellular bacteria.

The finding that Septins (through SEPT7) are differentially regulated through actively secreting bacteria is very exciting and can steer novel research directions.

Weaknesses:

The manuscript makes a connection between two research lines (1: Shigella infection and DNA/protein synthesis, 2: regulation of septins around invading Shigella) that are not fully developed - this makes it sometimes difficult to understand the take-home messages of the authors.

It is not clear whether the analysis that was done on projected images actually reflects the phenotypes of the original 3D data. This issue needs to be carefully addressed.

Author response:

Reviewer #1 (Public Review):

Summary:

In this study, López-Jiménez and colleagues demonstrated the utility of using high-content microscopy in dissecting host and bacterial determinants that play a role in the establishment of infection using Shigella flexneri as a model. The manuscript nicely identifies that infection with Shigella results in a block to DNA replication and protein synthesis. At the same time, the host responds, in part, via the entrapment of Shigella in septin cages.

Strengths:

The main strength of this manuscript is its technical aspects. They nicely demonstrate how an automated microscopy pipeline coupled with artificial intelligence can be used to gain new insights regarding elements of bacterial pathogenesis, using Shigella flexneri as a model system. Using this pipeline enabled the investigators to enhance the field's general understanding regarding the role of septin cages in responding to invading Shigella. This platform should be of interest to those who study a variety of intracellular microbial pathogens.

Another strength of the manuscript is the demonstration - using cell biology-based approaches- that infection with Shigella blocks DNA replication and protein synthesis. These observations nicely dovetail with the prior findings of other groups. Nevertheless, their clever click-chemistry-based approaches provide visual evidence of these phenomena and should interest many.

We thank the Reviewer for their enthusiasm on the technical aspects of this paper, regarding both the automated microscopy pipeline coupled with artificial intelligence and the click-chemistry based approaches to dissect DNA replication and protein synthesis by microscopy.

Weaknesses:

There are two main weaknesses of this work. First, the studies are limited to findings obtained using a single immortalized cell line. It is appreciated that HeLa cells serve as an excellent model for studying aspects of Shigella pathogenesis and host responses. However, it would be nice to see that similar observations are observed with an epithelial cell line of intestinal, preferably colonic origin, and eventually, with a non-immortalized cell line, although it is appreciated that the latter studies are beyond the scope of this work.

The immortalized cell line HeLa is widely regarded as a paradigm to study infection by Shigella and other intracellular pathogens. However, we agree that future studies beyond the scope of this work should include other cell lines (eg. epithelial cells of colonic origin, macrophages, primary cells).

The other weakness is that the studies are minimally mechanistic. For example, the investigators have data to suggest that infection with Shigella leads to an arrest in DNA replication and protein synthesis; however, no follow-up studies have been conducted to determine how these host cell processes are disabled. Interestingly, Zhang and colleagues recently identified that the Shigella OspC effectors target eukaryotic translation initiation factor 3 to block host cell translation (PMID: 38368608). This paper should be discussed and cited in the discussion.

We appreciate the Reviewer’s concern about the lack of follow up work on observations of host DNA and protein synthesis arrest upon Shigella infection, which will be the focus of future studies. We acknowledge the recent work of Zhang et al. (Cell Reports, 2024) considering their similar results on protein translation arrest, and we fully agree that this reference should be more fully discussed in a revised version of the manuscript.

Reviewer #2 (Public Review):

Summary:

Septin caging has emerged as one of the innate immune responses of eukaryotic cells to infections by intracellular bacteria. This fascinating assembly of eukaryotic proteins into complex structures restricts bacteria motility within the cytoplasm of host cells, thereby facilitating recognition by cytosolic sensors and components of the autophagy machinery. Given the different types of septin caging that have been described thus far, a single-cell, unbiased approach to quantify and characterise septin recruitment at bacteria is important to fully grasp the role and function of caging. Thus, the authors have developed an automated image analysis pipeline allowing bacterial segmentation and classification of septin cages that will be very useful in the future, applied to study the role of host and bacterial factors, compare different bacterial strains, or even compare infections by clinical isolates.

Strengths:

The authors developed a solid pipeline that has been thoroughly validated. When tested on infected cells, automated analysis corroborated previous observations and allowed the unbiased quantification of the different types of septin cages as well as the correlation between caging and bacterial metabolic activity. This approach will prove an essential asset in the further characterisation of septin cages for future studies.

We thank the Reviewer for their positive comments, and for highlighting the strength of our imaging and analysis pipeline to analyse Shigella-septin interactions.

Weaknesses:

As the main aim of the manuscript is to describe the newly developed analysis pipeline, the results illustrated in the manuscript are essentially descriptive. The developed pipeline seems exceptionally efficient in recognising septin cages in infected cells but its application for a broader purpose or field of study remains limited.

The main objective of this manuscript is the development of imaging and analysis tools to study Shigella infection, and in particular, Shigella interactions with the septin cytoskeleton. In future work we will provide more mechanistic insight with novel experiments and broader applicability, using different cell lines (in agreement with Reviewer 1), mutants or clinical isolates of Shigella and different bacteria species (eg. Listeria, Salmonella, mycobacteria).

Reviewer #3 (Public Review):

Summary:

The manuscript uses high-content imaging and advanced image-analysis tools to monitor the infection of epithelial cells by Shigella. They perform some analysis on the state of the cells (through measurements of DNA and protein synthesis), and then they focus on differential recruitment of Sept7 to the bacteria. They link this recruitment with the activity of the bacterial T3SS, which is a very interesting discovery. Overall, I found numerous exciting elements in this manuscript, and I have a couple of reservations. Please see below for more details on my reservations. Nevertheless, I think that these issues can be addressed by the authors, and doing so will help to make it a convincing and interesting piece for the community working on intracellular pathogens. The authors should also carefully re-edit their manuscript to avoid overselling their data (see below for issues I see there). I would consider taking out the first figure and starting with Figure 3 (Figure 2 could be re-organized in the later parts)- that could help to make the flow of the manuscript better.

Strengths:

The high-content analysis including the innovative analytical workflows are very promising and could be used by a large number of scientists working on intracellular bacteria. The finding that Septins (through SEPT7) are differentially regulated through actively secreting bacteria is very exciting and can steer novel research directions.

We thank the Reviewer for their constructive feedback and the excitement for our results, including our findings on T3SS activity and Shigella-septin interactions_._ In accordance with the Reviewer’s comments, we agree to carefully re-edit our manuscript to avoid overselling our data in a future version of the manuscript. We will also consider to rearrange figures depending on new results.

Weaknesses:

The manuscript makes a connection between two research lines (1: Shigella infection and DNA/protein synthesis, 2: regulation of septins around invading Shigella) that are not fully developed - this makes it sometimes difficult to understand the take-home messages of the authors.

We agree that the manuscript is mostly technical and therefore some of our experimental observations would benefit from follow up mechanistic studies in the future. We highlight our vision for broader applicability in response to weaknesses raised by Reviewer 2.

It is not clear whether the analysis that was done on projected images actually reflects the phenotypes of the original 3D data. This issue needs to be carefully addressed.

We agree with the Reviewer that characterizing 3D data using 2D projected images has limitations.

We observe an increase in cell and nuclear surface that does not strictly imply a change in volume. This is why we measure Hoechst intensity in the nucleus using SUM-projection (as it can be used as a proxy of DNA content of the cell). However, we agree that future use of other markers (such as fluorescent labelled histones) would make our conclusions more robust.

Regarding the different orientation of intracellular bacteria, we agree that investigation of septin recruitment is more challenging when bacteria are placed perpendicular to the acquisition plane. In a first step, we trained a Convolutional Neural Network (CNN) using 2D data, as it is easier/faster to train and requires fewer annotated images. In doing so, we already managed to correctly identify 80% of Shigella interacting with septins, which enabled us to observe higher T3SS activity in this population. In future studies, we will maximize the 3D potential of our data and retrain a CNN that will allow more precise identification of Shigella-septin interactions and in depth characterization of volumetric parameters.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation