Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorFilippo Del BeneInstitut de la Vision, Paris, France
- Senior EditorRichard WhiteUniversity of Oxford, Oxford, United Kingdom
Reviewer #1 (Public Review):
Scerbo et al. developed an approach based on the oncogene kRasG12V and a reprogramming factor to induce deterministic and reproducible malignant transformation in a single cell. The activation of kRasG12V alone is not sufficient in their hands to initiate carcinogenesis, but when combined with the transient activation of a reprogramming factor (such as Ventx, Nanog, or Oct4), it significantly increases the probability of malignant transformation. This combination of oncogene and reprogramming factor may alter the epigenetic and functional state of the cell, leading to the development of tumors within a short period of time. The use of these two factors allows for the controlled manipulation of a single cell to study the cellular and molecular events involved in the early stages of tumorigenesis. The authors then performed allotransplantations of allegedly single fluorescent TICs in recipient larvae and found a large number of fluorescent cells in distant locations, claiming that these cells have all originated from the single transplanted TIC and migrated away. The number of fluorescent cells showed in the recipient larve just after two days is not compatible with a normal cell cycle length and more likely represents the progeny of more than one transplanted cell. The ability to migrate from the injection site should be documented by time-lapse microscopy. Then, the authors conclude that "By allowing for specific and reproducible single cell malignant transformation in vivo, their optogenetic approach opens the way for a quantitative study of the initial stages of cancer at the single cell level". However, the evidence for these claims are weak and further characterization should be performed to:
(1) show that they are actually activating the oncogene in a single cell (the magnification is too low and it is difficult to distinguish a single nucleus, labelling of the cell membrane may help to demonstrate that they are effectively activating the oncogene in, or transplanting, a single cell)
(2) the expression of the genes used as markers of tumorigenesis is performed in whole larvae, with only a few transformed cells in them. Changes should be confirmed in FACS sorted fluorescent cells
(3) the histology of the so called "tumor masses" is not showing malignant transformation, but at the most just hyperplasia. In the brain, the sections are not perfectly symmetrical and the increase of cellularity on one side of the optic tectum is compatible with this asymmetry.
(4) The number of fluorescent cells found dispersed in the larve transplanted with one single TIC after 48 hours will require a very fast cell cycle to generate over 50 cells. Do we have an idea of the cell cycle features of the transplanted TICs?
Reviewer #2 (Public Review):
Summary:
In the work by Scerbo et al, the authors aim to better understand the open question of what factors constrain cells that are genetically predisposed to form cancer (e.g. those with a potentially cancer-causing mutation like activated Ras) to only infrequently undergo this malignant transformation, with a focus on the influence of embryonic or pluripotency factors (e.g. VENTX/NANOG). Using genetically defined zebrafish models, the authors can inducibly express the KRASG12V oncogene using a combination of Cre/Lox transgenes further controlled by optogenetically inducible Cre-activated (CreER fusion that becomes active with light-induced uncaging of a tamoxifen-analogue in a targeted region of the zebrafish embryo). They further show that transient expression and activation of a pluripotency factor (e.g. Ventx fused to a GR receptor that is activated with addition of dexamethasone) must occur in the model in order for overgrowth of cells to occur. This paper describes a genetically tractable and modifiable system for studying the requirements for inducing cellular hyperplasia in a whole organism by combining overexpression of canonical genetic drivers of cancer (like Ras) with epigenetic modifiers (like specific transcription factors), which could be used to study an array of combinations and temporal relationships of these cancer drivers/modifiers.
Strengths:
The combination of Cre/lox inducible gene expression with potentially localized optogenetic induction (CreER and uncaging of tamoxifen analogues) of recombination as well as well inducible activation of a transcription factor expressed via mRNA injection (GR-fusion to the TF and dex induction) offers a flexible system for manipulating cell growth, identity, and transcriptional programs. With this system, the authors establish that Ras activation and at least transient Ventx overexpression are together required to induce a hyperproliferative phenotype in zebrafish tissues.
The ability to live image embryos over the course of days with inducible fluorophores indicating recombination events and transgene overexpression offers a tractable in vivo system for studying hyperplastic cells in the context of a whole organism.
The transplant experiments demonstrate the ability of the induced hyperplastic cells to grow upon transfer to new host.
Weaknesses:
There is minimal quantitation of key aspects of the system, most critically in the efficiency of activation of the Ras-TFP fusion (Fig 1) in, purportedly, a single cell. The authors note "On average the oncogene is then activated in a single cell, identified within ~1h by the blue fluorescence of its nuclear marker) but no additional quantitative information is provided. For a system that is aimed at "a statistically relevant single-cell
tracking and characterization of the early stages of tumorigenesis", such information seems essential.
The authors indicate that a single cell is "initiated" (Fig 2) using the laser optogenetic technique, but without definitive genetic lineage tracing, it is not possible to conclude that cells expressing TFP distant from the target site near the ear are daughter cells of the claimed single "initiated" cell. A plausible alternative explanation is 1) that the optogenetic targeting is more diffuse (i.e. some of the light of the appropriate wavelength hits other cells nearby due to reflection/diffraction), so these adjacent cells are additional independent "initiated" cells or 2) that the uncaged tamoxifen analogue can diffuse to nearby cells and allow for CreER activation and recombination. In Fig 2B, the claim is made that "the activated cell has divided, giving rise to two cells" - unless continuously imaged or genetically traced, this is unproven. In addition, it appears that Figures S3 and S4 are showing that hyperplasica can arise in many different tissues (including intestine, pancreas, and liver, S4C) with broad Ras + Ventx activation (while unclear from the text, it appears these embryos were broadly activated and were not "single cell activated using the set-up in Fig 1E? This should be clarified in the manuscript). In Fig S7 where single cell activation and potential metastasis is discussed, similar gut tissues have TFP+ cells that are called metastatic, but this seems consistent with the possibility that multiple independent sites of initiation are occurring even when focal activation is attempted.
Although the hyperplastic cells are transplantable (Fig 4), the use of the term "cells of origin of cancer" or metastatic cells should be viewed with care in the experiments showing TFP+ cells (Fig 1, 2, 3) in embryos with targeted activation for the reasons noted above.
Reviewer #3 (Public Review):
Summary:
This study employs an optogenetics approach aimed at activating oncogene (KRASG12V) expression in a single somatic cell, with a focus on following the progression of activated cell to examine tumourigenesis probabilities under altered tissue environments. The research explores the role of stemness factors (VENTX/NANOG/OCT4) in facilitating oncogenic RAS (KRASG12V)-driven malignant transformations. Although the evidence provided are incomplete, the authors propose an important mechanism whereby reactivation of re-programming factors correlates with the increased likelihood of a mutant cell undergoing malignant transformation.
Strengths:
· Innovative Use of Optogenetics: The application of optogenetics for precise activation of KRAS in a single cell is valuable to the field of cancer biology, offering an opportunity to uncover insight into cellular responses to oncogenic mutations.
· Important Observations: The findings concerning stemness factors' role in promoting oncogenic transformation are important, contributing data to the field of cancer biology.
Weaknesses:
Lack of Methodological Clarity: The manuscript lacks detailed descriptions of methodologies, making it difficult to fully evaluate the experimental design and reproducibility, rendering incomplete evidence to support the conclusion. Improving methodological transparency and data presentation will crucially strengthen the paper's contributions to understanding the complex processes of tumourigenesis.
Sub-optimal Data Presentation and Quality:
The resolution of images throughout the manuscript are too low. Images presented in Figure 2 and Figure 4 are of very low resolution. It is very hard to distinguish individual cells and in which tissue they might reside.
Lack of quantitative data and control condition data obtained from images of higher magnification limits the ability to robustly support the conclusions.
Here are some details:
· Tissue specificity of the cells express KRASG12V oncogene: In this study, the ubiquitin promoter was used to drive oncogenic KRASG12V expression. Despite this, the authors claim to activate KRAS in a single brain cell based on their localized photo-activation strategy. However, upon reviewing the methods section, the description was provided that 'Localized uncaging was performed by illumination for 7 minutes on a Nikon Ti microscope equipped with a light source peaking at 405 nm, Figure 1. The size of the uncaging region was controlled by an iris that defines a circular illumination with a diameter of approximately 80 μm.' It is surprising that an epi-fluorescent microscope with an illumination diameter of around 80μm can induce activation in a single brain cell beneath skin tissue. Additionally, given that the half-life for mTFP maturation is around 60 minutes, it is likely that more cells from a variety of different lineages could be activated, but the fluorescence would not be visible until more than 1-hour post-illumination. Authors might want to provide more evidence to support their claim on the single cell KRAS activation.
· Stability of cCYC: The manuscript does not provide information on the half-life and stability of cCYC. Understanding these properties is crucial for evaluating the system's reliability and the likelihood of leakiness, which could significantly influence the study's outcomes.
· Metastatic Dissemination claim: Typically, metastatic cancer cells migrate to and proliferate within specific niches that are conducive to outgrowth, such as the caudal hematopoietic tissue (CHT) or liver. In figure 3 A, an image showing the presence of mTFP expressing cells in both the head and tail regions of the larva, with additional positive dots located at the fin fold. This is interpreted as "metastasis" by the authors. However, the absence of a supportive cellular compartment within the fin-fold tissue makes the presence of mTFP-positive metastatic cells there particularly puzzling. This distribution raises concerns about the spatial specificity of the optogenetic activation protocol.
The unexpected locations of these signals suggest potential ectopic activation of the KRAS oncogene, which could be occurring alongside or instead of targeted activation. This issue is critical as it could affect the interpretation of whether the observed mTFP signal expansion over time is due to actual cell proliferation and infiltration, or merely a result of ectopic RAS transgene activation.
· Image Resolution Concerns: The cells depicted in Figure 3C β, which appear to be near the surface of the yolk sac and not within the digestive system as suggested in the MS, underscore the necessity for higher-resolution imaging. Without clearer images, it is challenging to ascertain the exact locations and states of these cells, thus complicating the assessment of experimental results.
· The cell transplantation experiment is lacking protocol details: The manuscript does not adequately describe the experimental protocols used for cell transplantation, particularly concerning the origin and selection of cells used for injection into individual larvae. This omission makes it difficult to evaluate the reliability and reproducibility of the results. Such as the source of transplanted cells:
• If the cells are derived from hyperplastic growths in larvae where RAS and VX (presumably VENTX) were locally activated, the manuscript fails to mention any use of fluorescence-activated cell sorting (FACS) to enrich mTFP-positive cells. Such a method would be crucial for ensuring the specificity of the cells being studied and the validity of the results.
• If the cells are obtained from whole larvae with induced RAS + VX expression, it is notable and somewhat surprising that the larvae survived up to six days post-induction (6dpi) before cells were harvested for transplantation. This survival rate and the subsequent ability to obtain single cell suspensions raise questions about the heterogeneity of the RAS + VX expressing cells that transplanted.
· Unclear Experimental Conditions in Figure S3B: The images in Figure S3B lack crucial details about the experimental conditions. It is not specified whether the activation of KRAS was targeted to specific cells or involved whole-body exposure. This information is essential for interpreting the scope and implications of the results accurately.
· Contrasting Data in Figure S3C compared to literature: The graph in Figure S3C indicates that KRAS or KRAS + DEX induction did not result in any form of hyperplastic growth. This observation starkly contrasts with previous literature where oncogenic KRAS expression in zebrafish led to significant hyper-proliferation and abnormal growth, as evidenced by studies such as those published in and Neoplasia (2018), DOI: 10.1016/j.neo.2018.10.002; Molecular Cancer (2015), DOI: 10.1186/s12943-015-0288-2; Disease Models & Mechanisms (2014) DOI: 10.1242/dmm.007831. The lack of expected hyperplasia raises questions about the experimental setup or the specific conditions under which KRAS was expressed. The authors should provide detailed descriptions of the conditions under which the experiments were conducted in Figure S3B and clarifying the reasons for the discrepancies observed in Figure S3C are crucial. The authors should discuss potential reasons for the deviation from previous reports.
Further comments:
Throughout the study, KRAS-activated cell expansion and metastasis are two key phenotypes discussed that Ventx is promoting. However, the authors did not perform any experiments to directly show that KRAS+ cells proliferate only in Ventx-activated conditions. The authors also did not show any morphological features or time-lapse videos demonstrating that KRAS+ cells are motile, even though zebrafish is an excellent model for in vivo live imaging. This seems to be a missed opportunity for providing convincing evidence to support the authors' conclusions.
There were minimal experimental details provided for the qPCR data presented in the supplementary figures S5 and S6, therefore, it is hard to evaluate result obtained.