Microglia aging in the hippocampus advances through intermediate states that drive inflammatory activation and cognitive decline

  1. Department of Anatomy, University of California San Francisco, San Francisco, California 94143, USA
  2. Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California 94143, USA
  3. Bakar Aging Research Institute, University of California San Francisco, San Francisco, California, 94143, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Carla Rothlin
    Yale University, New Haven, United States of America
  • Senior Editor
    Carla Rothlin
    Yale University, New Haven, United States of America

Reviewer #1 (Public Review):

Summary:

This manuscript by Shea and Villeda furnishes the field with a valuable scRNAseq data set detailing microglial aging in the mouse hippocampus. They provide clear evidence that changes in microglial attributes begin in mid-life, well before time points when mice are traditionally considered to be "aging." It also adds to a growing body of data in the field demonstrating that there is substantial heterogeneity in microglial responses to aging. Using in vitro experiments and transgenic manipulations in mice, the authors show that transforming growth factor beta (TGFb1)-based signaling can potently impact microglial state, consistent with previous findings in the field. They also demonstrate that manipulation of microglial TGFb1-based signaling can impact hippocampus-dependent behaviors.

Limitations of the study lie primarily in reaching too far with interpretations of the data. The authors argue that changes in microglial transcriptome during midlife represent a type of "checkpoint," after which microglial aging can progress along distinct trajectories depending on the status of TGFb1 signaling. They also posit that a specific intermediate "stress response" state in midlife is mechanistically linked to a translational burst that drives the subsequent progression of microglia to an "inflammatory state." Unequivocal data to support these causal links is lacking, however. similarly, key additional experiments would be needed to demonstrate that TGFb1 signaling and microglial progression through these identified intermediate states are causally linked to cognitive decline.

Guidance for readers along with study strengths and caveats:

The present manuscript provides valuable strengthening and expansion to a growing body of data showing prominent changes in the microglial state during aging. Microarray(1), bulkRNAseq(2-5), scRNAseq(6,7), snRNAseq(8,9), and spatial transcriptomic(10) approaches have been leveraged to map changes in microglial transcriptome during aging in rodents, non-human primates, and humans. A number of these studies include the hippocampus (1,8,9,11) and have highlighted variation across brain regions in microglial transcriptomic changes during aging (1,11). They have also revealed differences across sex (7) as well as increased cell-to-cell heterogeneity (6-10), consistent with the idea that individual microglia can follow distinct aging trajectories. Several of these studies revealed that changes in microglial attributes begin in middle age (1,7,11), supporting similar observations from studies that did not use omics (12-14). The present manuscript utilizes scRNAseq of hippocampal microglia at adulthood (6mo), middle age (12mo), late middle age (18mo) and aging (24mo) to show that aging-induced changes in microglia begin in middle age and that microglia exhibit ample phenotypic heterogeneity during the progression of aging.

To gain further insight into the dynamics of microglial aging in the hippocampus, the authors used a bioinformatics method known as "pseudotime" or "trajectory inference" to understand how cells may progress through different functional states, as defined by cellular transcriptome (15,16). These bioinformatics approaches can reveal key patterns in scRNAseq / snRNAseq datasets and, in the present study, the authors conclude that a "stress response" module characterized by expression of TGFb1 represents a key "checkpoint" in microglial aging in midlife, after which the cells can move along distinct transcriptional trajectories as aging progresses. This is an intriguing possibility. However, pseudotime analyses need to be validated via additional bioinformatics as well as follow-up experiments. Indeed, Heumos et al, in their Nature Genetics "Expert Guidelines" Review, emphasize that "inferred trajectories might not necessarily have biological meaning." They recommend that "when the expected topology is unknown, trajectories and downstream hypotheses should be confirmed by multiple trajectory inference methods using different underlying assumptions."(15) Numerous algorithms are available for trajectory inference (e.g. Monocle, PAGA, Sligshot, RaceID/StemID, among many others) and their performance and suitability depends on the individual dataset and nature of the trajectories that are to be inferred. It is recommended to use dynGuidelines(16) for the selection of optimal pseudotime analysis methods. In the present manuscript, the authors do not provide any justification for their use of Monocle 3 over other trajectory inference approaches, nor do they employ a secondary trajectory inference method to confirm observations made with Monocle 3. Finally, follow-up validation experiments that the authors carry out have their own limitations and caveats (see below). Hence, while the microglial aging trajectories identified by this study are intriguing, they remain hypothetical trajectories that need to be proven with additional follow-up experiments.

To follow up on the idea that TGFb1 signaling in microglia plays a key role in determining microglial aging trajectories, the authors use RNAscope to show that TGFb1 levels in microglia peak in middle age. They also treat primary LPS-activated microglia with TGFb1 and show that this restores expression of microglial homeostatic gene expression and dampens expression of stress response and, potentially, inflammatory genes. Finally, they utilize transgenic approaches to delete TGFb1 from microglia around 8-10mo of age and scRNAseq to show that homeostatic signatures are lost and inflammatory signatures are gained. Hence, findings in this study support the idea that TGFb1 can strongly regulate microglial phenotype. Loss of TGFb1 signaling to microglia in adulthood has already been shown to cause decreased microglial morphological complexity and upregulation of genes typically associated with microglial responses to CNS insults(17-19). TGFb1 signaling to microglia has also been implicated in microglial responses to disease and manipulations to increase this signaling can improve disease progression in some cases(19). In this light, the findings in the present study are largely confirmatory of previous findings in the literature. They also fall short of unequivocally demonstrating that TGFb1 signaling acts as a "checkpoint" for determining subsequent microglial aging trajectory. To show this clearly, one would need to perturb TGFb1 signaling around 12mo of age and carry out sequencing (bulkRNAseq or scRNAseq) of microglia at 18mo and 24mo. Such experiments could directly demonstrate whether the whole microglial population has been diverted to the TGFb1-low aging trajectory (that progresses through a translational burst state to an inflammation state as proposed). Future development of tools to tag TGFb1 high or low microglia could also enable fate tracing type experiments to directly show whether the TGFb1 state in middle age predicts cell state at later phases of aging.

The present study would also like to draw links between features of microglial aging in the hippocampus and a decline in hippocampal-dependent cognition during aging. To this end, they carry out behavioral testing in 8-10mo old mice that have undergone microglial-specific TGFb1 deletion and find deficits in novel object recognition and contextual fear conditioning. While this provides compelling evidence that TGFb1 signaling in microglia can impact hippocampus-dependent cognition in midlife, it does not demonstrate that this signaling accelerates or modulates cognitive decline (see below). Age-associated cognitive decline refers to cognitive deficits that emerge as a result of the normative brain aging process(20-21). For a cognitive deficit to be considered age-associated cognitive decline, it must be shown that the cognitive operation under study was intact at some point earlier in the adult lifespan. This requires longitudinal study designs that determine whether a manipulation impacts the relationship between brain status and cognition as animals age (22-24). Alternatively, cross-sectional studies with adequate sample sizes can be used to sample the variability in cognitive outcomes at different points of the adult lifespan(22-24) and show that this is altered by a particular manipulation. For this specific study, one would ideally demonstrate that hippocampal-based learning/memory was intact at some point in the lifespan of mice with microglial TGFb1 KO but that this manipulation accelerated or exacerbated the emergence of deficits in hippocampal-dependent learning/memory during aging. In the absence of these types of data, the authors should tone down their claims that they have identified a cellular and molecular mechanism that contributes to cognitive decline.

A final point of clarification for the reader pertains to the mining of previously generated data sets within this study. The language in the results section, methods, and figure legends causes confusion about which experiments were actually carried out in this study versus previous studies. Some of the language makes it sound as though parabiosis experiments and experiments using mouse models of Alzheimer's Disease were carried out in this study. However, parabiosis and AD mouse model experiments were executed in previous studies (25,26), and in the present study, RNAseq datasets were accessed for targeted data mining. It is fantastic to see further mining of datasets that already exist in the field. However, descriptions in the results and methods sections need to make it crystal clear that this is what was done.

References:

(1) Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. (2016). doi:10.1038/nn.4222
(2) Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. (2013). doi:10.1038/nn.3554
(3) Deczkowska, A. et al. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nat. Commun. (2017). doi:10.1038/s41467-017-00769-0
(4) O'Neil, S. M., Witcher, K. G., McKim, D. B. & Godbout, J. P. Forced turnover of aged microglia induces an intermediate phenotype but does not rebalance CNS environmental cues driving priming to immune challenge. Acta Neuropathol. Commun. (2018). doi:10.1186/s40478-018-0636-8
(5) Olah, M. et al. A transcriptomic atlas of aged human microglia. Nat. Commun. (2018). doi:10.1038/s41467-018-02926-5
(6) Hammond, T. R. et al. Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity 50, 253-271 (2019).
(7) Li, X. et al. Transcriptional and epigenetic decoding of the microglial aging process. Nat. aging 3, 1288-1311 (2023).
(8) Zhang, H. et al. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 12, 695-716 (2021).
(9) Su, Y. et al. A single-cell transcriptome atlas of glial diversity in the human hippocampus across the postnatal lifespan. Cell Stem Cell 29, 1594-1610.e8 (2022).
(10) Allen, W. E., Blosser, T. R., Sullivan, Z. A., Dulac, C. & Zhuang, X. Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell 186, 194-208.e18 (2023).
(11) Soreq, L. et al. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging. Cell Rep. 18, 557-570 (2017).
(12) Hefendehl, J. K. et al. Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell (2014). doi:10.1111/acel.12149
(13) Nikodemova, M. et al. Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week. J. Neuroimmunol. 0, 280-288 (2015).
(14) Moca, E. N. et al. Microglia Drive Pockets of Neuroinflammation in Middle Age. J. Neurosci. 42, 3896-3918 (2022).
(15) Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550-572 (2023).
(16) Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods: towards more accurate and robust tools. (2018). doi:10.1101/276907
(17) Zöller, T. et al. Silencing of TGFβ signalling in microglia results in impaired homeostasis. Nat. Commun. 9, (2018).
(18) Bedolla, A. et al. Microglia-derived TGF-β1 ligand maintains microglia homeostasis via autocrine mechanism and is critical for normal cognitive function in adult mouse brain. bioRxiv Prepr. Serv. Biol. (2023). doi:10.1101/2023.07.05.547814
(19) Spittau, B., Dokalis, N. & Prinz, M. The Role of TGFβ Signaling in Microglia Maturation and Activation. Trends Immunol. 41, 836-848 (2020).
(20) L. Nyberg, M. Lövdén, K. Riklund, U. Lindenberger, L. Bäckman, Memory aging and brain maintenance. Trends Cogn. Sci. 16, 292-305 (2012).
(21) L. Luo, F. I. M. Craik, Aging and memory: A cognitive approach. Can. J. Psychiatry 53, 346-353 (2008).
(22) Y. Stern, M. Albert, C. Barnes, R. Cabeza, A. Pascual-Leone, P. Rapp.
A framework for concepts of reserve and resilience in aging. Neurobiol. Aging, 124 (2022), pp. 100-103, 10.1016/j.neurobiolaging.2022.10.015
(23) Y. Stern, C.A. Barnes, C. Grady, R.N. Jones, N. Raz. Brain reserve, cognitive reserve, compensation, and maintenance: operationalization, validity, and mechanisms of cognitive resilience. Neurobiol. Aging, 83 (2019), pp. 124-129, 10.1016/j.neurobiolaging.2019.03.022
(24) R. Cabeza, M. Albert, S. Belleville, F.I.M. Craik, A. Duarte, C.L. Grady, U. Lindenberger, L. Nyberg, D.C. Park, P.A. Reuter-Lorenz, M.D. Rugg, J. Steffener, M.N. Rajah. Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci., 19 (11) (2018), Article 11, 10.1038/s41583-018-0068-2
(25) Palovics, R. et al molecular hallmarks of heterochronic parabiosis at single-cell resolution. Nature 603, 309-314 (2022)
(26) Sala Frigerio, C. et al. The major risk factors for Alzheimer's Disease: age, sex, and genes modulate the microglial response to Abeta plaques. Cell Rep, 27, 1293-1306 (2019)

Reviewer #2 (Public Review):

Summary:

The goal of the paper was to trace the transitions hippocampal microglia undergo along aging. ScRNA-seq analysis allowed the authors to predict a trajectory and hypothesize about possible molecular checkpoints, which keep the pace of microglial aging. E.g. TGF1b was predicted as a molecule slowing down the microglial aging path and indeed, loss of TGF1 in microglia led to premature microglia aging, which was associated with premature loss of cognitive ability. The authors also used the parabiosis model to show how peripheral, blood-derived signals from the old organism can "push" microglia forward on the aging path.

Strengths:

A major strength and uniqueness of this work is the in-depth single-cell dataset, which may be a useful resource for the community, as well as the data showing what happens to young microglia in heterochronic parabiosis setting and upon loss of TGFb in their environment.

Weaknesses:

That said, given what we recently learned about microglia isolation for RNA-seq analysis, there is a danger that some of the observations are a result of not age, but cell stress from sample preparation (enzymatic digestion 10min at 37C; e.g. PMID: 35260865). Changes in cell state distribution along aging were made based on scRNA-seq and were not corroborated by any other method, such as imaging of cluster-specific marker expression in microglia at different ages. This analysis would allow confirming the scRNA-seq data and would also give us an idea of where the subsets are present within the hippocampus, and whether there is any interesting distribution of cell states (e.g. some are present closer to stem cells?). Since TGFb is thought to be crucial to microglia biology, it would be valuable to include more analysis of the mice with microglia-specific Tgfb deletion e.g. what was the efficiency of recombination in microglia? Did their numbers change after induction of Tgfb deletion in Cx3cr1-creERT2::Tgfb-flox mice.

Overall:

In general, I think the authors did a good job following the initial observations and devised clever ways to test the emerging hypotheses. The resulting data are an important addition to what we know about microglial aging and can be fruitfully used by other researchers, e.g. those working on microglia in a disease context.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation