The Mycobacterium tuberculosis complex pangenome is small and shaped by sub-lineage-specific regions of difference

  1. Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
  2. Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
  3. Department of Biomedical Informatics, Harvard Medical School, Boston, United States
  4. Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, United Kingdom
  5. Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, United States
  6. Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium

Peer review process

Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Bavesh Kana
    University of the Witwatersrand, Johannesburg, South Africa
  • Senior Editor
    Bavesh Kana
    University of the Witwatersrand, Johannesburg, South Africa

Reviewer #1 (Public review):

Summary:

In this paper, Behruznia and colleagues use long-read sequencing data for 339 strains of the Mycobacterium tuberculosis complex to study genome evolution in this clonal bacterial pathogen. They use both a "classical" pangenome approach that looks at the presence and absence of genes, and a pangenome graph based on whole genomes in order to investigate structural variants in non-coding regions. The comparison of the two approaches is informative and shows that much is missed when focussing only on genes. The two main biological results of the study are that 1) the MTBC has a small pangenome with few accessory genes, and that 2) pangenome evolution is driven by genome reduction. In the revised article, the description of the data set and the methods is much improved, and the comparison of the two pangenome approaches is more consistent. I still think, however, that the discussion of genome reduction suffers from a basic flaw, namely the failure to distinguish clearly between orthologs and homologs/paralogs.

Strengths:

The authors put together the so-far largest data set of long-read assemblies representing most lineages of the Mycobacterium tuberculosis context, and covering a large geographic area. They sequenced and assembled genomes for strains of M. pinnipedi, L9, and La2, for which no high-quality assemblies were available previously. State-of-the-art methods are used to analyze gene presence-absence polymorphisms (Panaroo) and to construct a pangenome graph (PanGraph). Additional analysis steps are performed to address known problems with misannotated or misassembled genes.

Weaknesses:

The revised manuscript has gained much clarity and consistency. One previous criticism, however, has in my opinion not been properly addressed. I think the problem boils down to not clearly distinguishing between orthologs and paralogs/homologs. As this problem affects a main conclusion - the prevalence of deletions over insertions in the MTBC - it should be addressed, if not through additional analyses, then at least in the discussion.

Insertions and deletions are now distinguished in the following way: "Accessory regions were further classified as a deletion if present in over 50% of the 192 sub-lineages or an insertion/duplication if present in less than 50% of sub-lineages." The outcome of this classification is suspicious: not a single accessory region was classified as an insertion/duplication. As a check of sanity, I'd expect at least some insertions of IS6110 to show up, which has produced lineage- or sublineage-specific insertions (Roychowdhury et al. 2015, Shitikov et al. 2019). Why, for example, wouldn't IS6110 insertions in the single L8 strain show up here?

In a fully clonal organism, any insertion/duplication will be an insertion/duplication of an existing sequence, and thus produce a paralog. If I'm correctly understanding your methods section, paralogs are systematically excluded in the pangraph analysis. Genomic blocks are summarized at the sublineage levels as follows (l.184 ): "The DNA sequences from genomic blocks present in at least one sub-lineage but completely absent in others were extracted to look for long-term evolution patterns in the pangenome." I presume this is done using blastn, as in other steps of the analysis.

So a sublineage-specific copy of IS6110 would be excluded here, because IS6110 is present somewhere in the genome in all sublineages. However, the appropriate category of comparison, at least for the discussion of genome reduction, is orthology rather than homology: is the same, orthologous copy of IS6110, at the same position in the genome, present or absent in other sublineages? The same considerations apply to potential sublineage-specific duplicates of PE, PPE, and Esx genes. These gene families play important roles in host-pathogen interactions, so I'd argue that the neglect of paralogs is not a finicky detail, but could be of broader biological relevance.

Reviewer #2 (Public review):

Summary:

The authors attempted to investigate the pangenome of MTBC by using a selection of state-of-the-art bioinformatic tools to analyse 324 complete and 11 new genomes representing all known lineages and sublineages. The aim of their work was to describe the total diversity of the MTBC and to investigate the driving evolutionary force. By using long read and hybrid approaches for genome assembly, an important attempt was made to understand why the MTBC pangenome size was reported to vary in size by previous reports. This study provides strong evidence that the MTBC pangenome is closed and that genome reduction is the main driver of this species evolution.

Strengths:

A stand-out feature of this work is the inclusion of non-coding regions as opposed to only coding regions which was a focus of previous papers and analyses which investigated the MTBC pangenome. A unique feature of this work is that it highlights sublineage-specific regions of difference (RDs) that was previously unknown. Another major strength is the utilisation of long-read whole genomes sequences, in combination with short-read sequences when available. It is known that using only short reads for genome assembly has several pitfalls. The parallel approach of utilizing both Panaroo and Pangraph for pangenomic reconstruction illuminated limitations of both tools while highlighting genomic features identified by both. This is important for any future work and perhaps alludes to the need for more MTBC-specific tools to be developed. Lastly, ample statistical support in the form of Heaps law and genome fluidity calculations for each pangenome to demonstrate that they are indeed closed.

Weaknesses:

There are no major weaknesses in the revised version of this manuscript.

Author response:

The following is the authors’ response to the current reviews.

Public Reviews:

Reviewer #1 (Public review):

Weaknesses:

The revised manuscript has gained much clarity and consistency. One previous criticism, however, has in my opinion not been properly addressed. I think the problem boils down to not clearly distinguishing between orthologs and paralogs/homologs. As this problem affects a main conclusion - the prevalence of deletions over insertions in the MTBC - it should be addressed, if not through additional analyses, then at least in the discussion.

Insertions and deletions are now distinguished in the following way: "Accessory regions were further classified as a deletion if present in over 50% of the 192 sub-lineages or an insertion/duplication if present in less than 50% of sub-lineages." The outcome of this classification is suspicious: not a single accessory region was classified as an insertion/duplication. As a check of sanity, I'd expect at least some insertions of IS6110 to show up, which has produced lineage- or sublineage-specific insertions (Roychowdhury et al. 2015, Shitikov et al. 2019). Why, for example, wouldn't IS6110 insertions in the single L8 strain show up here?

In a fully clonal organism, any insertion/duplication will be an insertion/duplication of an existing sequence, and thus produce a paralog. If I'm correctly understanding your methods section, paralogs are systematically excluded in the pangraph analysis. Genomic blocks are summarized at the sublineage levels as follows (l.184 ): "The DNA sequences from genomic blocks present in at least one sub-lineage but completely absent in others were extracted to look for long-term evolution patterns in the pangenome." I presume this is done using blastn, as in other steps of the analysis.

So a sublineage-specific copy of IS6110 would be excluded here, because IS6110 is present somewhere in the genome in all sublineages. However, the appropriate category of comparison, at least for the discussion of genome reduction, is orthology rather than homology: is the same, orthologous copy of IS6110, at the same position in the genome, present or absent in other sublineages? The same considerations apply to potential sublineage-specific duplicates of PE, PPE, and Esx genes. These gene families play important roles in host-pathogen interactions, so I'd argue that the neglect of paralogs is not a finicky detail, but could be of broader biological relevance.

Within the analysis we undertook we did look at paralogous blocks in pangraph, based on copy number per genome. However, this could have been clearer in the text and we will rectify this. We also focussed on duplicated/deleted blocks that were present in two of more sub-lineages. This is noted in figure 4 legend but we will make this clearer in other sections of the manuscript.

We agree that indeed the way paralogs are handled could still be optimised, and that gene duplicates of some genes could have biological importance. The reviewer is suggesting that a synteny analysis between genomes would be best for finding specific regions that are duplicated/deleted within a genome, and if those sections are duplicated/deleted in the same regions of the genome. Since Pangraph does not give such information readily, a larger amount of analysis would be required to confirm such genome position-specific duplications. While this is indeed important, we deem this to be out of scope for the current publication, but will note this as a limitation in the discussion. However, this does not fundamentally change the main conclusions of our analysis.


The following is the authors’ response to the original reviews.

Public Reviews:

Reviewer #1 (Public Review):

Summary:

In this paper, Behruznia and colleagues use long-read sequencing data for 335 strains of the Mycobacterium tuberculosis complex to study genome evolution in this clonal bacterial pathogen. They use both a "classical" pangenome approach that looks at the presence and absence of genes, and a more general pangenome graph approach to investigate structural variants also in non-coding regions. The two main results of the study are that (1) the MTBC has a small pangenome with few accessory genes, and that (2) pangenome evolution is driven by deletions in sublineage-specific regions of difference. Combining the gene-based approach with a pangenome graph is innovative, and the former analysis is largely sound apart from a lack of information about the data set used. The graph part, however, requires more work and currently fails to support the second main result. Problems include the omission of important information and the confusing analysis of structural variants in terms of "regions of difference", which unnecessarily introduces reference bias. Overall, I very much like the direction taken in this article, but think that it needs more work: on the one hand by simply telling the reader what exactly was done, on the other by taking advantage of the information contained in the pangenome graph.

Strengths:

The authors put together a large data set of long-read assemblies representing most lineages of the Mycobacterium tuberculosis context, covering a large geographic area. State-of-the-art methods are used to analyze gene presence-absence polymorphisms (Panaroo) and to construct a pangenome graph (PanGraph). Additional analysis steps are performed to address known problems with misannotated or misassembled genes in pangenome analysis.

Weaknesses:

The study does not quite live up to the expectations raised in the introduction. Firstly, while the importance of using a curated data set is emphasized, little information is given about the data set apart from the geographic origin of the samples (Figure 1). A BUSCO analysis is conducted to filter for assembly quality, but no results are reported. It is also not clear whether the authors assembled genomes themselves in the cases where, according to Supplementary Table 1, only the reads were published but not the assemblies. In the end, we simply have to trust that single-contig assemblies based on long-reads are reliable.

We have now added a robust overview of the dataset to supplementary file 1. This is split into 3 sections: public genomes, which were assembled by others; sequenced genomes, which were created and assembled by us; the BUSCO information for all the genomes together. We did not assemble any public data ourselves but retrieved these from elsewhere. We have modified the text to be more specific on this (Line 114 onwards) and the supplementary file is updated to better outline the data.

One issue with long read assemblies could be that high rates of sequencing errors result in artificial indels when coverage is low, which in turn could affect gene annotation and pangenome inference (e.g. Watson & Warr 2019, https://doi.org/10.1038/s41587-018-0004-z). Some of the older long-read data used by the authors could well be problematic (PacBio RSII), but also their own Nanopore assemblies, six of which have a mean coverage below 50 (Wick et al. 2023 recommend 200x for ONT, https://doi.org/ 10.1371/journal.pcbi.1010905). Could the results be affected by such assembly errors? Are there lineages, for example, for which there is an increased proportion of RSII data? Given the large heterogeneity in data quality on the NCBI, I think more information about the reads and the assemblies should be provided.

We have now included an analysis where we looked to see if the sequencing platform influenced the resulting accessory genome size and the pseudogene count. The details of this are included in lines 207-219, and the results are outlined in lines 251-258. Essentially, we found no correlation between sequencing platform and genome characteristics, although less stringent cut-offs did suggest that PacBio SMRT-only assembled genomes may have larger accessory genomes. We do not believe this is enough to influence our larger inferences from this data. It should be noted that complete genomes, in general, give a better indication of pangenome size compared to draft genomes, as has been shown previously (e.g. Marin et al., 2024). Even with some small potential bias, this makes our analysis more robust than any previously published.

In relation to the sequencing depth of our own data, all genomes had coverage above 30x, which Sanderson et al. (2024) has shown to be sufficient for highly accurate sequence recovery. We fixed an issue with the L9 isolate from the previous submission, which resulted in a better BUSCO score and overall quality of that isolate and the overall dataset.

The part of the paper I struggled most with is the pangenome graph analysis and the interpretation of structural variants in terms of "regions of difference". To start with, the method section states that "multiple whole genomes were aligned into a graph using PanGraph" (l.159/160), without stating which genomes were for what reason. From Figure 5 I understand that you included all genomes, and that Figure 6 summarizes the information at the sublineage level. This should be stated clearly, at present the reader has to figure out what was done. It was also not clear to me why the authors focus on the sublineage level: a minority of accessory genes (107 of 506) are "specific to certain lineages or sublineages" (l. 240), so why conclude that the pangenome is "driven by sublineage-specific regions of difference", as the title states? What does "driven by" mean? Instead of cutting the phylogeny arbitrarily at the sublineage level, polymorphisms could be described more generally by their frequencies.

We apologise for the ambiguity in the methodology. All the isolates were inputted to Pangraph to create the pangenome using this method. This is now made clearer in lines 175-177. Standard pangenome statistics (size, genome fluidity, etc.) derived from this Pangraph output are now present in the results section as well (lines 301-320).

We then only looked at regions of difference at the sub-lineage level, meaning we grouped genomes by sub-lineage within the resulting graph and looked for blocks common between isolates of the same sub-lineage but absent from one or more other sub-lineages. We did this from both the Panaroo output and the Pangraph output and then retained only blocks found by both. The results of this are now outlined in lines 351-383.

We focussed on these sub-lineage-specific regions to focus on long-term evolution patterns and not be influenced by single-genome short-term changes. We do not have enough genomes of closely related isolates to truly look at very recent evolution, although the small accessory genome indicates this is not substantial in terms of gene presence/absence. We also did not want potential mis-annotations in a single genome to heavily influence our findings due to the potential issues pointed out by the reviewer above. We state this more clearly in the introduction (lines 106-108), methods (lines 184-186) and results (345-347), and we indicate the limitations in the Discussion, lines 452-457 and 471-473. We also changed the title to ‘shaped’ instead of ‘driven by’.

I fully agree that pangenome graphs are the way to go and that the non-coding part of the genome deserves as much attention as the coding part, as stated in the introduction. Here, however, the analysis of the pangenome graph consists of extracting variants from the graph and blasting them against the reference genome H37Rv in order to identify genes and "regions of difference" (RDs) that are variable. It is not clear what the authors do with structural variants that yield no blast hit against H37Rv. Are they ignored? Are they included as new "regions of difference"? How many of them are there? etc. The key advantage of pangenome graphs is that they allow a reference-free, full representation of genetic variation in a sample. Here reference bias is reintroduced in the first analysis step.

We apologise for the confusion here as indeed the RDs terminology is very MTBC-specific. Current RDs are always relevant to H37Rv, as that is how original discovery of these regions was done and that is how RDScan works. We clarify this in the introduction (lines 67-68). If we found a large sequence polymorphism (e.g. by Pangraph) and searched for known RDs using RDScan, we then assigned a current RD name to this LSP. This uses H37Rv as a reference. If we did not find a known RD, we then classified the LSP as a new RD if it is present in H37Rv, or left the designation as an LSP if not in H37Rv, thus expanding the analysis beyond the H37Rv-centric approaches used by others previously. This is hopefully now made clearer in the methods, lines 187-194.

Along similar lines, I find the interpretation of structural variants in terms of "regions of difference" confusing, and probably many people outside the TB field will do so. For one thing, it is not clear where these RDs and their names come from. Did the authors use an annotation of RDs in the reference genome H37Rv from previously published work (e.g. Bespiatykh et al. 2021)? This is important basic information, its lack makes it difficult to judge the validity of the results. The Bespiatykh et al. study uses a large short-read data (721 strains) set to characterize diversity in RDs and specifically focuses on the sublineage-specific variants. While the authors cite the paper, it would be relevant to compare the results of the two studies in more detail.

We have amended the introduction to explain this terminology better (lines 67-68). Naming of the RDs here came from using RDScan to assign current names to any accessory regions we found and if such a region was not a known RD, we gave it a lineage-related name, allowing for proper RD naming later (lines 187-194). Because the Bespiatyk paper is the basis for RDScan, our work implicitly compares to this throughout, as any RDs we find which were not picked up by RDScan are thus novel compared to that paper.

As far as I understand, "regions of difference" have been used in the tuberculosis field to describe structural variants relative to the reference genome H37Rv. Colloquially, regions present in H37Rv but absent in another strain have been called "deletions". Whether these polymorphisms have indeed originated through deletion or through insertion in H37Rv or its ancestors requires a comparison with additional strains. While the pangenome graph does contain this information, the authors do not attempt to categorize structural variants into insertions and deletions but simply seem to assume that "regions of difference" are deletions. This, as well as the neglect of paralogs in the "classical" pangenome analysis, puts a question mark behind their conclusion that deletion drives pangenome evolution in the MTBC.

We have now amended the analysis to specifically designate a structural variant as a deletion if present in the majority of strains and absent in a minority, or an insertion/duplication if present in a minority and absent in a majority (lines 191-192). We also ran Panaroo without merging paralogs to examine duplication in this output; Pangraph implicitly includes paralogs already.

From all these analyses we did not find any structural variants classed as insertions/duplications and did not find paralogs to be a major feature at the sub-lineage level (lines 377-383). While these features could be important on shorter timescales, we do not have enough closed genomes to confidently state this (limitation outlined in lines 452-457). Therefore, our assertion that deletions are a primary force shaping the long-term evolution in this group still holds.

Reviewer #2 (Public Review):

Summary:

The authors attempted to investigate the pangenome of MTBC by using a selection of state-of-the-art bioinformatic tools to analyse 324 complete and 11 new genomes representing all known lineages and sublineages. The aim of their work was to describe the total diversity of the MTBC and to investigate the driving evolutionary force. By using long read and hybrid approaches for genome assembly, an important attempt was made to understand why the MTBC pangenome size was reported to vary in size by previous reports.

Strengths:

A stand-out feature of this work is the inclusion of non-coding regions as opposed to only coding regions which was a focus of previous papers and analyses which investigated the MTBC pangenome. A unique feature of this work is that it highlights sublineage-specific regions of difference (RDs) that were previously unknown. Another major strength is the utilisation of long-read whole genomes sequences, in combination with short-read sequences when available. It is known that using only short reads for genome assembly has several pitfalls. The parallel approach of utilizing both Panaroo and Pangraph for pangenomic reconstruction illuminated the limitations of both tools while highlighting genomic features identified by both. This is important for any future work and perhaps alludes to the need for more MTBC-specific tools to be developed.

Weaknesses:

The only major weakness was the limited number of isolates from certain lineages and the over-representation others, which was also acknowledged by the authors. However, since the case is made that the MTBC has a closed pangenome, the inclusion of additional genomes would not result in the identification of any new genes. This is a strong statement without an illustration/statistical analysis to support this.

We have included a Heaps law and genome fluidity calculation for each pangenome estimation to demonstrate that the pangenome is closed. This is detailed in lines 225-228 with results shown in lines 274-278 and 316- 320 and Supplementary Figure 2. We agree that more closely related genomes would benefit a future version of this analysis and indicate we indicate the limitations in the Discussion, lines 452-457 and 471-473.

Recommendations for the authors:

Reviewer #1 (Recommendations For The Authors):

Abstract

l. 24, "with distinct genomic features". I'm not sure what you are referring to here.

We refer to the differences in accessory genome and related functional profiles but did not want to bloat the abstract with such additional details

Introduction

l. 40, "L1 to L9". A lineage 10 has been described recently: https://doi.org/10.3201/eid3003.231466.

We have updated the text and the reference. Unfortunately, no closed genome for this lineage exists so we have not included it in the analyses. We note this in the results, like 232

l.62/3, "caused by the absence of horizontal gene transfer, plasmids, and recombination". Recombination is not absent in the MTBC, only horizontal gene transfer seems to be, which is what the cited studies show. Indeed a few sentences later homologous recombination is mentioned as a cause of deletions.

This has now been removed from the introduction

l. 67, "within lineage diversity is thought to be mostly driven by SNPs". Again I'm not sure what is meant here with "driven by". Point mutations are probably the most common mutational events, but duplications, insertions, deletions, and gene conversion also occur and can affect large regions and possibly important genes, as shown in a recent preprint (https://doi.org/10.1101/2024.03.08.584093).

We have changed the text to say ‘mostly composed of’. While indeed other SNVs may be contributing, the prevailing thought at lineage level is that SNPs are the primary source of diversity. The linked pre-print is looking at within transmission clusters and this has not been described at the lineage level, which could be done in a future work.

l. 100/1. "that can account for variations in virulence, metabolism, and antibiotic resistance". I would phrase this conservatively since the functional inferences in this study are speculative.

This has now been tempered to be less specific.

Methods

l. 108. That an assembly has a single contig does not mean that it is "closed". Many single contig assemblies on NCBI are reference-guided short-read assemblies, that is, fragments patched together rather than closed assemblies. The same could be true for long-read assemblies.

We specifically chose those listed as closed on NCBI so rely on their checks to ensure this is true. We have stated this better in the paper, line 117.

l. 111. From Supplementary Table 1 understand that for many genomes only the reads were available (no ASM number). Did you assemble these genomes? If yes, how? The assembly method is not indicated in the supplement, contrary to what is written here.

All public genomes were downloaded in their assembled forms from the various sources. This is specified better in the text (line 118) and the supplementary table 1 now lists the accessions for all the assemblies.

l. 113. How many assemblies passed this threshold? And is BUSCO actually useful to assess assembly quality in the MTBC? I assume the dynamic, repetitive gene families that cause problems for assembly and mapping in TB (PE, PPE, ESX) do not figure in the BUSCO list of single-copy orthologs.

All assemblies passed the BUSCO thresholds for high-quality genomes as laid out in Supplementary Table 1. While indeed this does not include multi-copy genes such as PE/PPE we focussed on regions of difference at the sub-lineage level where two or more genomes represent that sub-lineage. This means any assembly issues in a single genome would need to be exactly the same in another of the same sub-lineage to be included in our results. Through this, we aimed to buffer out issues in individual assemblies.

l. 147: Why is Panaroo used with -merge-paralogs? I understand that near-identical genes may not be too interesting from a functional perspective, but if the aim of the analysis is to make broad claims about processes driving genome evolution, paralogs should be considered.

We chose to do so with merged paralogs to look for larger patterns of diversity beyond within-genome paralogs. Additionally, this was required to build the core phylogenetic tree. However, as the reviewer points out, this may bias our findings towards deletions and away from duplications as a primary evolutionary force.

We repeated this without the merged paralogs option and indeed found a larger pangenome, as outlined in Table 1. However, at the sub-lineage level, this did not result in any new presence/absence patterns (lines 381-383). This means the paralogs tended to be in single genomes only. This still indicates that deletions are the primary force in the longer-term evolution of the complex but indeed on shorter spans this may be different.

l. 153: remove the comment in brackets.

This has been fixed and the proper URL placed in instead.

l. 159: which genomes, and why those?

This is now clarified to state all genomes were used for this analysis.

l. 161, "gene blocks": since this analysis is introduced as capturing the non-coding part of the genome, maybe just call them "blocks"?

All references to gene blocks are now changed to genomic blocks to be more specific.

l. 162: what happens with blocks that yield no hits against RvD1, TbD1, and H37Rv?

We named these with lineage-specific names (supplementary table 4) but did not assign RD names specifically.

l. 164: where does the information about the regions of difference come from? How exactly were these regions determined?

Awe have expanded this section to be more specific on the use of RDScan and new naming, along with how we determine if something is an RD/LSP.

Results

l. 185ff: This paragraph gives many details about the geographic origin of the samples, but what I'd expect here is a short description of assembly qualities, for example, the results of the BUSCO analysis, a description of your own Nanopore assemblies, or a small analysis of the number of indels/pseudogenes relative to sequencing technology or coverage (see comment in the public review).

This section (lines 231-258) has been expanded considerably to give a better overview of the dataset and any potential biases. Supplementary table 1 has also been expanded to include more information on each strain.

l. 187, "324 genomes published previously": 322 according to the methods section.

The number has been fixed throughout to the proper total of public genomes (329).

l. 201: define the soft core, shell, and cloud genes.

This is now defined on line 262

l. 228, "defined primarily by RD105 and RD207 deletions": this claim seems to come from the analysis of variable importance (Factoextra), which should be made clear here.

This has been clarified on line 333.

l. 237, "L8, serving as the ancestor of the MTBC": this is incorrect, equivalent to saying that the Chimpanzee is the ancestor of Homo sapiens.

We have changed this to basal to align with how it is described in the original paper.

l. 239, "The accessory genome of the MTBC". It is a bit confusing that the same term, 'accessory genome', is used here for the graph-based analysis, which is presented as a way to look at the non-coding part of the genome.

We have clarified the terminology on line 347 and improved consistency throughout.

l. 240/1, "specific to certain lineages and sublineages". What exactly do you mean by "specific" to? Present only in members of a certain lineage/sublineage? In all members of a certain lineage/sublineage? Maybe an additional panel in Figure 5, showing examples of lineage- and sublineage-specific variants, would help the reader grasp this key concept.

We have clarified this on line 349 and the legend of what is now figure 4.

l. 241/2, "82 lineage and sublineage-specific genomic regions ranging from 270 bp to 9.8 kb". Were "gene blocks" filtered for a minimum size, or why are there no variants smaller than 270 bp? A short description of all the blocks identified in the graph could be informative (their sizes, frequencies ...).

Yes, a minimum of 250bp was set for the blocks to only look at larger polymorphisms. This is clarified on line 177 and 304.

A second point: It is not entirely clear to me what Figure 6 is showing. Are you showing here a single representative strain per sublineage? Or have you somehow summarized the regions of difference shown in Figure 5 at the sublineage level? What is the tree on the left? This should be made clear in the legend and maybe also in the methods/results.

In figure 4 (which was figure 6), because each RD is common to all members of the same sub-lineage, we have placed a single branch for each sub-lineage. This is has been clarified in the legend.

l. 254, "this gene was classified as being in the core genome": why should a partially deleted gene not be in the core genome?

You are correct, we have removed that statement.

l. 258/259, "The Pangraph alignment approach identified partial gene deletion and non-coding regions of the DNA that were impacted by genomic deletion". I do not understand how you classify a structural variant identified in the pangenome graph as a deletion or an insertion.

This has been clarified as relative to H37Rv, as this is standard practice for RDs and general evolutionary analyses in MTBC, as outlined above.

l. 262/263 , "the accessory genome of the MTBC is small and is acquired vertically from a common ancestor within the lineage". If deletion is the main process involved here, "acquired" seems a bit strange.

We agree and changed the header to better reflect the discussion on mis-annotation issues

Figure 1: Good to know, but not directly relevant for the rest of the paper. Maybe move it to the supplement?

This has been moved to Supplementary figure 1

Figure 2: the y-axis is labeled 'Variable genome size', but from the text and the legend I figure it should be 'Number of accessory genes'?

This has been changed to ‘accessory genes’ in Figure 1 (which was figure 2 in previous version).

Figure 4: too small.

We will endeavour to ensure this is as large as possible in the final version.

Discussion

l. 271, "MTBC accessory genome is ... acquired vertically". See above.

Changed, as outlined above.

l. 292, "appeared to be fragmented genes caused by misassemblies". Is there a way to distinguish "true" pseudogenes from misassemblies? This could be a relevant issue for low-coverage long-read assemblies (see public review).

Not that we are currently aware of, but we do know other groups which are working on this issue.

l. 300/1, "the whole-genome approach could capture higher genetic variations". Do you mean the graph approach? I'm not sure that comparing the two approaches here makes sense, as they serve different purposes. A pangenome graph is a summary of all genetic variation, while the purpose of Panaroo is to study gene absence/presence. So by definition, the graph should capture more genetic variation.

This statement was specifically to state that much genetic variation in MTBC is outside the coding genes and so traditional “pangenome’ analyses are actually not looking at the full genomic variation.

l. 302/3, "this method identified non-coding regions of the genome that were affected by genomic deletions". See the comments above regarding deletions versus insertions. I'd say this method identifies coding and non-coding regions that were affected by genomic deletions and insertions.

We have undertaken additional analyses to be sure these are likely deletions, as outlined above.

l. 305: what are "lineage-independent deletions"?

We labelled these as convergent evolution, now clarified on line 443.

l. 329: How is RD105 "caused" by the insertion of IS6110? I did not find RD105 mentioned in the Alonso et al. paper. Similarly below, l. 331, how is RD207 "linked" to IS6110?

The RD105 connection was misattributed as IS6110 insertion is related to RD152, not RD105. This has now been removed.

RD207 is linked to IS6110 as its deletion is due to recombination between two such elements. This is now clarified on line 486.

l. 345, "the growth advantage gene group": not quite sure what this is.

We have fixed this on line 499 to state they are genes which confer growth advantages.

l. 373ff: The role of genetic drift in the evolution of the MTBC is an open question, other studies have come to different conclusions than Hershberg et al. (this has been recently reviewed: https://doi.org/10.24072/pcjournal.322).

We have outlined this debate better in lines 527-531

l. 375/6, "Gene loss, driven by genetic drift, is likely to be a key contributor to the observed genetic diversity within the MTBC." This sentence would need some elaboration to be intelligible. How does genetic drift drive gene loss?

We have removed this.

l. 395/6, "... predominantly driven by genome reduction. This observation underlines the importance of genomic deletions in the evolution of the MTBC." See comments above regarding deletions. I'm not convinced that your study really shows this, as it completely ignores paralogs and the processes counteracting reductive genome evolution: duplication and gene amplification.

As outlined above, we have undertaken additional analyses to more strongly support this statement.

l. 399, "the accessory genome of MTBC is a product of gene deletions, which can be classified into lineage-specific and independent deletions". Again, I'm not sure what is meant by lineage-independent deletions.

We have better defined this in the text, line 443, to be related to convergent evolution.

Reviewer #2 (Recommendations For The Authors):

Suggestions for improved or additional experiments, data, or analyses.

In lines 120-121, it is mentioned that TB-profiler v4.4.2 was used for lineage classification, but this version was released in February 2023. As I understand there have been some changes (inclusion/exclusion) of certain lineage markers. Would it not be appropriate to repeat lineage classification with a more recent version? This would of course require extensive re-analysis, so could the lineage marker database perhaps also be cited.

We have rerun all the genomes through TB-Profiler v6.5 and updated the text to state this; the exact database used is also now stated.

Could the authors perhaps include the sequencing summary or quality of the nanopore sequences? The L9 (Mtb8) sample had a relatively lower depth and resulted in two contigs. Yet one contig was the initial inclusion criteria. It is unclear whether these samples were excluded from some of the analyses. Mtb6 also has relatively low coverage. Was the sequencing quality adequate to accurately identify all the lineage markers, in particular those with a lower depth of coverage? Could a hybrid approach be an inexpensive way to polish these assemblies?

We reanalysed the L9 sample and, with some better cleaning, got it to a single contig with better depth and overall score. This is outlined in the Supplementary table 1 sheets. While depth is average, it is still above the recommended 30x, which is needed for good sequence recovery (Sanderson et al., 2024). We did indeed recover all lineage markers from these assemblies.

Recommendations for improving the writing and presentation.

The introduction is well-written and recent MTBC pangenomic studies have been incorporated, but I am curious as to why this paper was not referred to: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6922483/ I believe this was the first attempt to study the pangenome, albeit with a different research question. Nearly all previous analyses largely focused on utilizing the pangenome to investigate transmission.

Indeed this study did look at a pangenome of sorts, but specifically SNPs and not genes or regions. Since the latter is the main basis for pangenome work these days, we chose not to include this paper.

Minor corrections to the text and figures.

In line 129, it is explained that DNA was extracted to be suitable for PacBio sequencing, but ONT sequencing was used for the 11 new sequences. Is this a minor oversight or do the authors feel that DNA extracted for PacBio would be suitable for ONT sequencing? It is a fair assumption.

We apologise, this is a long-read extraction approach and not specific to PacBio. We have amended the text to state this.

In line 153, this should be removed: (Conor, could you please add the script to your GitHub page?).

This has been fixed now.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation