Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorKeqiang YeChinese Academy of Sciences, Shenzhen, China
- Senior EditorClaude DesplanNew York University, New York, United States of America
Reviewer #1 (Public Review):
Summary:
In this manuscript, the authors use the model organism Drosophila to explore the sex and age impacts of a TBI method. They find age and sex differences: older age is susceptible to mild TBI and females are also more susceptible. In particular, they pursue a finding that virgin vs mated females show different responses: virgins are protected but mated females succumb to TBI with climbing deficits. In fact, virgin females compared to mated females are largely protected. They discover that this is associated with exposure of the females to Sex Peptides in the reproductive neurons of the female reproductive tract. When they extend to RNAseq of brains, they show that there are very few genes in common between males, mated females, virgins and females mated with males lacking Sex Peptide. The few chronic genes associated with mated females seem associated with the immune system. These findings suggest that mated females have a compromised immune system, which might make them more vulnerable.
Strengths:
This is an interesting paper that allows a detailed comparison of sex and age in TBI which is largely only possible in such a simple model, where large numbers and many variations can be addressed. Overall the findings are interesting.
Weaknesses:
Although the findings beyond Sex Peptide are observational, the work sets the stage for more detailed studies to pursue the role of the genes they find by RNAseq and whether for example, boosting the innate immune system would protect the mated females, among other experiments.
Reviewer #2 (Public Review):
Summary:
In this manuscript, the authors use the Drosophila model system to study the impact of mild head trauma on sex-dependent brain deficits. They identify Sex Peptide as a modulator of greater negative outcome in female flies. Additionally, they observe that increased age at the time of injury results in worse outcomes, especially in females, and that this is due to chronic suppression of innate immune defense networks in mated females. The results demonstrate a novel signaling pathway that promotes age- and sex-dependent outcomes after head injury.
Strengths:
The authors have modified their previously reported TBI model in flies to mimic mild TBI, which is novel. Methods are explained in detail, allowing for reproducibility. Experiments are rigorous with appropriate statistics. A number of important controls are included. The work tells a complete mechanistic story and adds important data to increase our understanding of sex-dependent differences in recovery after TBI. The discussion is comprehensive and puts the work in the context of the field.
Weaknesses:
A very minor weakness is that exact n values should be included in the figure legends. There should also be confirmation of knockdown by RNAi in female flies either by immunohistochemistry or qRT-PCR if possible.
Reviewer #3 (Public Review):
Summary:
In this manuscript, the authors used a Drosophila model to show that exposure to repetitive mild TBI causes neurodegenerative conditions that emerge late in life and disproportionately affect females. In addition to well-known age-dependent impact, the authors identified Sex Peptide (SP) signaling as a key factor in female susceptibility to post-injury brain deficits.
Strengths:
The authors have presented a compelling set of results showing that female Sex Peptide signaling adversely affects late-life neurodegeneration after early-life exposure to repetitive mild head injury in Drosophila. They have (1) compared the phenotypes of adult male and female flies sustaining TBI at different ages, and the phenotypes of virgin females and mated females, (2) compared the phenotypes of eliminating SP signaling in mating females and introducing SP-signaling into virgin females, (3) compared transcriptomic changes of different groups in response to TBI. The results are generally consistent and robust.
Weaknesses:
The authors have made their claims largely based on assaying climbing index and vacuole formation as the only indicators of late-life neurodegeneration after TBI. However, these phenotypes are not really specific to TBI-related neurodegeneration, and the significance and mechanisms of especially vacuole formation are not clear. The authors should perform additional analyses on TBI-related neurodegeneration in flies, which have been shown before (Genetics. 2015 Oct; 201(2): 377-402). Furthermore, it is also really surprising to see so few DEGs even in wild-type males and mated females, and to see that none of the DEGs overlapped among groups or are even related to the SP-signaling. This raises questions about the validity of the RNA-seq analysis. It is critical to independently verify their RNA-sequencing results and to add some more molecular evidence to support their conclusion. Finally, it is unknown what the implication of female fly mating and its associated Sex Peptide signaling would be to mammalians or humans, and what are the mechanisms underlying the sexual dimorphism.