Neural mechanism of rebooting the unconsciousness caused by midazolam

  1. Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, 310006, China
  2. Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
  3. Department of Anesthesiology, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, 310006, China
  4. Medical College of Jining Medical University, Ningji, 272067, Shandong, China
  5. Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310006, China

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Karim Fifel
    Mohammed VI Polytechnic University, Ben Guerir, Morocco
  • Senior Editor
    Sacha Nelson
    Brandeis University, Waltham, United States of America

Reviewer #1 (Public Review):

In this study, Gu at al., investigated the role of the central noradrenaline system from LC to VLPO in the recovery of consciousness induced by midazolam. Combining pharmacology, optogenetics/chemogenetics, they found that the LC to VLPO NE circuits are essential for consciousness rebooting after midazolam, activation of this circuit strongly speeded up the recovery process, dependent on alpha1 adrenergic receptors in the VLPO neurons. The topic is important and their findings are of some interest.
However, substantial improvements are needed in the language, for grammar, clarity, and layout. There are significant experimental errors (see below 1-2). Further experiments are required to support their main conclusions.

(1) One major issue arises in Figure 4, the recording of VLPO Ca2+ activity. In Lines 211-215, they stated that they injected AAV2/9-DBH-GCaMP6m into the VLPO, while activating LC NE neurons. As they claimed in line 157, DBH is a specific promoter for NE neurons. This implies an attempt to label NE neurons in the VLPO, which is problematic because NE neurons are not present in the VLPO. This raises concerns about their viral infection strategy since Ca activity was observed in their photometry recording. This means that DBH promoter could randomly label some non-NE neurons. Is DBH promoter widely used? The authors should list references. Additionally, they should quantify the labeling efficiency of both DBH and TH-cre throughout the paper.
(2) A similar issue arises with chemogenetic activation in Fig. 5 L-R, the authors used TH-cre and DIO-Gq virus to label VLPO neurons. Were they labelling VLPO NE or DA neurons for recording? The authors have to clarify this.
(3) Another related question pertains to the specificity of LC NE downstream neurons in the VLPO. For example, do they preferentially modulate GABAergic or glutamatergic neurons?
(4) In Figure 1A-D, in the measurement of the dosage-dependent effect of Mida in LORR, were they only performed one batch of testing? If more than one batch of mice were used, error bar should be presented in 1B. Also, the rationale of testing TH expression levels after Mid is not clear. Is TH expression level change related to NE activation specifically? If so, they should cite references.
(5) Regarding the photometry recording of LC NE neurons during the entire process of midazolam injection in Fig. 2 and Fig. 4, it is unclear what time=0 stands for. If I understand correctly, the authors were comparing spontaneous activity during the four phases. Additionally, they only show traces lasting for 20s in Fig. 2F and Fig. 4L. How did the authors select data for analysis, and what criteria were used? The authors should also quantify the average Ca2+ activity and Ca2+ transient frequency during each stage instead of only quantifying Ca2+ peaks. In line 919, the legend for Figure 2D, they stated that it is the signal at the BLA; were they also recorded from the BLA?

Reviewer #2 (Public Review):

Summary:

This article mainly explores the neural circuit mechanism of recovery of consciousness after midazolam administration and proves that the LC-VLPO NEergic neural circuit helps to promote the recovery of midazolam, and this effect is mainly caused by α1 adrenergic receptors. (α1-R) mediated.

Strengths:

This article uses innovative methods such as optogenetics and fiber optic photometry in the experimental methods section to make the stimulation of neuronal cells more precise and the stimulation intensity more accurate in experimental research. In addition, fiber optic photometry adds confidence to the results of calcium detection in mouse neuronal cells.

This article explains the results from the entire system down to cells, and then cells gradually unfold to explain the entire mechanism. The entire explanation process is logical and orderly. At the same time, this article conducted a large number of rescue experiments, which greatly increased the credibility of the experimental conclusions.

Throughout the full text and all conclusions, this article has elucidated the neural circuit mechanism of recovery of consciousness after midazolam administration and successfully verified that the LC-VLPO NEergic neural circuit helps promote the recovery of midazolam.

The conclusions of this article are crucial to ameliorate the complications of its abuse. It will pinpoint relevant regions involved in midazolam response and provide a perspective to help elucidate the dynamic changes in neural circuits in the brain during altered consciousness and suggest a promising approach towards the goal of timely recovery from midazolam. New research avenues.

At the same time, this article also has important clinical translation significance. The application of clinical drug midazolam and animal experiments have certain guiding significance for subsequent related clinical research.

Author Response:

We sincerely value the insightful and constructive feedback provided by the reviewers, which has been instrumental in identifying areas of our manuscript that required further clarification or amendment. Below are our responses detailing each comment.

Reviewer 1:

(1) One major issue arises in Figure 4, the recording of VLPO Ca2+ activity. In Lines 211-215, they stated that they injected AAV2/9-DBH-GCaMP6m into the VLPO, while activating LC NE neurons. As they claimed in line 157, DBH is a specific promoter for NE neurons. This implies an attempt to label NE neurons in the VLPO, which is problematic because NE neurons are not present in the VLPO. This raises concerns about their viral infection strategy since Ca activity was observed in their photometry recording. This means that DBH promoter could randomly label some non-NE neurons. Is DBH promoter widely used? The authors should list references. Additionally, they should quantify the labeling efficiency of both DBH and TH-cre throughout the paper.

(1) In Figure 5, we found that the VLPO received the noradrenergic projection from LC, indicating the recorded Ca2+ activity may come from the axon fibers corresponding to the projection. Similarly, Gunaydin et al. (2014) demonstrated that fiber photometry can be used to selectively record from neuronal projection.

(2) Located in the inner membrane of noradrenergic and adrenergic neurons, DBH (Dopamine-beta-hydroxylase) is an enzyme that catalyzes the conversion of dopamine to norepinephrine, and therefore plays an important role in noradrenergic neurotransmission. DBH is a marker of noradrenergic neurons. Zhou et al. (2020) clarified the probe specifically labeled noradrenergic neurons by immunolabeling for DBH. Recently, DBH promoter have been used in several studies (e.g., Han et al., 2024; Lian et al., 2023). The DBH-Cre mice are widely used to specifically labeled noradrenergic neurons (e.g., Li et al., 2023; Breton-Provencher et al., 2022; Liu et al., 2024). As reviewer said, it is difficult to distinguish the role of NE or DA neurons when using the TH promoter in VLPO. Therefore, we used DBH promoter with more specific labeling. LC is the main noradrenergic nucleus of the central nervous system. In our study, we injected rAAV-DBH-GCaMP6m-WPRE (Figure 2 and 8) and rAAV-DBH-EGFP-S'miR-30a-shRNA GABAA receptor)-3’-miR30a-WPRES (Figure 9) into the LC. The results showed that DBH promoter could specifically label noradrenergic neurons in the LC, while non-specific markers outside the LC were almost absent. As suggested, we will quantify the labeling efficiency of both DBH and TH-cre throughout the revised manuscript. This updated figure will provide a more rigorous analysis.

(2) A similar issue arises with chemogenetic activation in Fig. 5 L-R, the authors used TH-cre and DIO-Gq virus to label VLPO neurons. Were they labelling VLPO NE or DA neurons for recording? The authors have to clarify this.

As previously addressed in response to Comment #1, we acknowledge that it is difficult to distinguish the role of NE or DA neurons when using the TH promoter in VLPO. In the revised manuscript, we are considering conducting more restricted AAV injections into the VLPO to verify terminal expressions in the LC.

(3) Another related question pertains to the specificity of LC NE downstream neurons in the VLPO. For example, do they preferentially modulate GABAergic or glutamatergic neurons?

As suggested, we will supplement the multi-label ISH of LC NE downstream neurons in the VLPO to reveal the types of neurons they modulate.

(4) In Figure 1A-D, in the measurement of the dosage-dependent effect of Mida in LORR, were they only performed one batch of testing? If more than one batch of mice were used, error bar should be presented in 1B. Also, the rationale of testing TH expression levels after Mid is not clear. Is TH expression level change related to NE activation specifically? If so, they should cite references.

(1) As recommended, we will supplement error bar in the revised manuscript.

(2) As reviewer suggested, the use of TH as a marker of NE activation is controversial, so in the revised manuscript, we will directly determine central norepinephrine content.

(5) Regarding the photometry recording of LC NE neurons during the entire process of midazolam injection in Fig. 2 and Fig. 4, it is unclear what time=0 stands for. If I understand correctly, the authors were comparing spontaneous activity during the four phases. Additionally, they only show traces lasting for 20s in Fig. 2F and Fig. 4L. How did the authors select data for analysis, and what criteria were used? The authors should also quantify the average Ca2+ activity and Ca2+ transient frequency during each stage instead of only quantifying Ca2+ peaks. In line 919, the legend for Figure 2D, they stated that it is the signal at the BLA; were they also recorded from the BLA?

(1) In this study, we used optical fiber calcium signal recording, which is a fluorescence imaging based on changes in calcium. The fluorescence signal is usually divided into different segments according to the behavior, and the corresponding segments are orderly according to the specific behavior event as the time=0. The mean calcium fluorescence signal in the time window 1.5s or 1s before the event behavior is taken as the baseline fluorescence intensity (F0), and the difference between the fluorescence intensity of the occurrence of the behavior and the baseline fluorescence intensity is divided by the difference between the baseline fluorescence intensity and the offset value. That is, the value ΔF/F0 represents the change of calcium fluorescence intensity when the event occurs. The results of the analysis are commonly represented by two kinds of graphs, namely heat map and event-related peri-event plot (e.g., Cheng et al., 2022; Gan-Or et al., 2023; Wei et al., 2018). In Fig. 2, the time points for awake, midazolam injection, LORR and RORR in mice were respectively selected as time=0, while in Fig. 4, RORR in mice was selected as time=0. The selected traces lasting for 20s was based on the length of a complete Ca2+ signal. We will explain the Ca2+ recording experiment more specifically in the revised manuscript.

(2) To the BLA, we sincerely apologize for our carelessness, the signal we recorded were from the LC rather than the BLA. We will carefully check and correct similar problems in the revised manuscript.

Reviewer 2:

In figure legends, abbreviations in figure should be supplemented as much as possible. For example, "LORR" in Figure 1.

As suggested, we will supplement abbreviations in figure as much as possible in the revised manuscript.

References

Gunaydin LA, Grosenick L, Finkelstein JC, et al. Natural neural projection dynamics underlying social behavior. Cell. 2014;157(7):1535-1551. doi:10.1016/j.cell.2014.05.017

Zhou N, Huo F, Yue Y, Yin C. Specific Fluorescent Probe Based on "Protect-Deprotect" To Visualize the Norepinephrine Signaling Pathway and Drug Intervention Tracers. J Am Chem Soc. 2020;142(41):17751-17755. doi:10.1021/jacs.0c08956

Han S, Jiang B, Ren J, et al. Impaired Lactate Release in Dorsal CA1 Astrocytes Contributed to Nociceptive Sensitization and Comorbid Memory Deficits in Rodents. Anesthesiology. 2024;140(3):538-557. doi:10.1097/ALN.0000000000004756

Lian X, Xu Q, Wang Y, et al. Noradrenergic pathway from the locus coeruleus to heart is implicated in modulating SUDEP. iScience. 2023;26(4):106284. Published 2023 Feb 27. doi:10.1016/j.isci.2023.106284

Li C, Sun T, Zhang Y, et al. A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice. Neuron. 2023;111(17):2727-2741.e7. doi:10.1016/j.neuron.2023.05.023

Breton-Provencher V, Drummond GT, Feng J, Li Y, Sur M. Spatiotemporal dynamics of noradrenaline during learned behaviour. Nature. 2022;606(7915):732-738. doi:10.1038/s41586-022-04782-2

Liu Q, Luo X, Liang Z, et al. Coordination between circadian neural circuit and intracellular molecular clock ensures rhythmic activation of adult neural stem cells. Proc Natl Acad Sci U S A. 2024;121(8):e2318030121. doi:10.1073/pnas.2318030121

Cheng J, Ma X, Li C, et al. Diet-induced inflammation in the anterior paraventricular thalamus induces compulsive sucrose-seeking. Nat Neurosci. 2022;25(8):1009-1013. doi:10.1038/s41593-022-01129-y

Gan-Or B, London M. Cortical circuits modulate mouse social vocalizations. Sci Adv. 2023;9(39):eade6992. doi:10.1126/sciadv.ade6992

Wei YC, Wang SR, Jiao ZL, et al. Medial preoptic area in mice is capable of mediating sexually dimorphic behaviors regardless of gender. Nat Commun. 2018;9(1):279. Published 2018 Jan 18. doi:10.1038/s41467-017-02648-0

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation