Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorYuji MishinaUniversity of Michigan, Ann Arbor, United States of America
- Senior EditorKathryn CheahUniversity of Hong Kong, Hong Kong, Hong Kong
Reviewer #1 (Public Review):
Summary
The work by She et al. investigates the role of SRFS2 in the MyoD+ progenitor cells during development. Deletion of SRFS2 in MyoD+ progenitor cells resulted in a defect in the directional migration of these cells and resulted in the presence of myoD+ progenitor in both nonmuscle and muscle tissues. The authors showed a defect in gene program regulation ECM, cell migration, cytoskeletal organization, and skeletal muscle differentiation by scRNA-seq. The authors further showed that many of these processes are regulated by a downstream target of SRFS2, the serine-threonine kinase Aurka. Finally, the authors showed that SRFS2 acts as a splicing factor and could contribute to differentiation by controlling the splicing of muscle-specific transcripts. This study addresses an important question in skeletal muscle development by focusing on the pathways and factors that regulate the migration of myoD+ progenitors and the impact of this process in skeletal muscle differentiation. This work is interesting but requires experimental evidence to support the findings.
Strengths
The regulators of myod+progenitor migration during skeletal muscle development is not completely understood. This work demonstrates that SRFS2 and aura kinase are key players in the process. Combining knockout and reporter lines in mice, the authors perform a detailed analysis of skeletal muscle cells to demonstrate the specific defects in SRFS2 in skeletal muscle development.
Weaknesses
This work explores an interesting question on regulating myoD+ progenitors and the defects of this process in skeletal muscle differentiation by SRFS2 but spreads out in many directions rather than focusing on the key defects. A number of approaches are used, but they lack the robust mechanistic analysis of the defects that result in muscle differentiation. Specifically, the role of SRFS2 on splicing appears to be a misfit here and does not explain the primary defects in the migration of myoD+ progenitors. There are concerns about the scRNA-seq and many transcripts in muscle biology that are not expressed in muscle cells. Focusing on main defects and additional experimental evidence to clear the fusion vs. precocious differentiation vs. reduced differentiation will strengthen this work.
(1) The analysis of RNA-seq data (Figure 2) is limited, and it is unclear how it relates to the work presented in this MS. The Go enrichment analysis is combined for both up and down-regulated DEG, thus making it difficult to understand the impact differently in both directions. Stac2 is a predominant neuronal isoform (while Stac3 is the muscle), and the Symm gene is not found in the HGNC or other databases. Could the authors provide the approved name for this gene? The premise of this work is based on defects in ECM processes resulting in the mis-targeting of the muscle progenitors to the nonmuscle regions. Which ECM proteins are differentially expressed?
(2) Could authors quantify the muscle progenitors dispersed in nonmuscle regions before their differentiation? Which nonmuscle tissues MyoD+ progenitors are seen? Most of the tDT staining in the enlarged sections appears to be punctate without any nuclear staining seen in these cells (Figure 3 B, D E-F). Could authors provide high-resolution images? Also, in the diaphragm cross-sections in mutants, tdT labeling appears to be missing in some areas within the myofibers defined as cavities by the authors (marked by white arrows, Figure 3H). Could this polarized localization of tDT be contributing to specific defects?
(3) Is there a difference in the levels of tDT in the myoD" muscle progenitors that are mis-targeted vs the others that are present in the muscle tissues?
(4) scRNA is unsuitable for myotubes and myofibers due to their size exclusion from microfluidics. Could authors explain the basis for scRNA-seq vs SnRNA-seq in this work? How are SKM defined in scRNA-data in Figure 4? As the myofibers are small in KO, could the increased level of late differentiation markers be due to the enrichment of these small myotubes/myofibers in scRNA? A different approach, such as ISH/IF with the myogenic markers at E9.5-10.5, may be able to resolve if these markers are prematurely induced.
(5) TNC is a marker for tenocytes and is absent in skeletal muscle cells. The authors mentioned a downregulation of TNC in the KO SKM derived clusters. This suggests a contamination of the tenocytes in the control cells. In spite of the downregulation of multiple ECM genes showed by scRNA-seq data, the ECM staining by laminin in KO in Figure 3 appears to be similar to controls.
(6) The expression of many fusion genes, such as myomaker and myomerger, is reduced in KO, suggesting a primary fusion defect vs a primary differentiation defect. Many mature myofiber proteins exhibit an increased expression in disease states, suggesting them as a compensatory mechanism. Authors need to provide additional experimental evidence supporting precocious differentiation as the primary defect.
(7) The fusion defects in KO are also evident in siRNA knockdown for SRSF2 and Aurka in C2C12, which mostly exhibits mononucleated myocytes in knockdowns. Also, a fusion index needs to be provided.
(8) The last section of the role of SRSF2 on splicing appears to be a misfit in this study. Authors describe the Bin1 isoforms in centronuclear myopathy, but exon17 is not involved in myopathy. Is exon17 exclusion seen in other diseases/ splicing studies?
Reviewer #2 (Public Review):
Summary:
This study was aimed to study the role of SRSF2 in governing MyoD progenitors to specific muscle regions. The Results confirmed the role of SRSF2 in controlling myogenic differentiation through the regulation of targeted genes and alternative splicing during skeletal muscle development.
Strengths:
The study used different methods and techniques to achieve aims and support the conclusions such as RNA sequencing analysis, Gene Ontology analysis, immunostaining analysis.
This study provides novel findings that SRSF2 controls the myogenic differentiation of MyoD+ progenitors, using transgenic mouse model and in vitro studies.
Weaknesses:
Although unbiased sequencing methods were used, their findings about SRSF2 served as a transcriptional regulator and functioned in alternative splicing events are not novel.
The introductions and discussion is not clearly written. The authors did not raise clear scientific questions in the introduction part. The last paragraph is only copy-paste of the abstract. The discussion part is mainly the repeat of their results without clear discussion.