Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorBavesh KanaUniversity of the Witwatersrand, Johannesburg, South Africa
- Senior EditorBavesh KanaUniversity of the Witwatersrand, Johannesburg, South Africa
Reviewer #1 (Public Review):
Summary:
Li Zhang et al. characterized two new Gram-negative endolysins identified through an AMP-targeted search in bacterial proteomes. These endolysins exhibit broad lytic activity against both Gram-negative and Gram-positive bacteria and retain significant antimicrobial activity even after prolonged exposure to high temperatures (100{degree sign}C for 1 hour). This stability is attributed to a temperature-reversible transition from a dimer to a monomer. The authors suggest several potential applications, such as complementing heat sterilization processes or being used in animal feed premixes that undergo high-temperature pelleting, which I agree with.
Strengths:
The claims are well-supported by relevant and complementary assays, as well as extensive bioinformatic analyses.
Weaknesses:
There are numerous statements in the introduction and discussion sections that I currently do not agree with and consider need to be addressed. Therefore, I recommend major revisions.
Major comments:
Introduction and Discussion:
The introduction and the discussion are currently too general and not focused. Furthermore, there are some key concepts that are missing and are important for the reader to have an overview of the current state-of-the-art regarding endolysins that target gram-negatives. Specifically, the concepts of 'Artilysins', 'Innolysins', and 'Lysocins' are not introduced. Besides this, the authors do not mention other high-throughput mining or engineering strategies for endolysins, such as e.g. the VersaTile platform, which was initially developed by Hans Gerstmans et al. for one of the targeted pathogens in this manuscript (i.e., Acinetobacter baumannii). Recent works by Niels Vander Elst et al. have demonstrated that this VersaTile platform can be used to high-throughput screen and hit-to-lead select endolysins in the magnitude tens of thousands. Lastly, Roberto Vázquez et al. have recently demonstrated with bio-informatic analyses that approximately 30% of Gram-negative endolysin entries have AMP-like regions (hydrophobic short sequences), and that these entries are interesting candidates for further wet lab testing due to their outer membrane penetrating capacities. Therefore, I fully disagree with the statement being made in the introduction that endolysin strategies to target Gram-negatives are 'in its infancy' and I urge the authors to provide a new introduction that properly gives an overview of the Gram-negative endolysin field.
Results:
It should be mentioned that the halo assay is a qualitative assay for activity testing. I personally do not like that the size of the halos is used to discriminate in endolysin activity. In this reviewer's opinion, the size of the halo is highly dependent on (i) the molecular size of the endolysin as smaller proteins can diffuse further in the agar, and (ii) the affinity of the CBD subdomain of the endolysin for the bacterial peptidoglycan. It should also be said that in the halo assay, there is a long contact time between the endolysin and the bacteria that are statically embedded in the agar, which can result in false positive results. How did the authors mitigate this?
Testing should have been done at equimolar concentrations. If the authors decided to e.g. test 50 µg/mL for each protein, how was this then compensated for differences in molecular weight? For example, if PHAb10 and PHAb11 have smaller molecular sizes than PHAb7, 8, and 9, there is more protein present in 50 µg/mL for the first two compared to the others, and this would explain the higher decrease in bacterial killing (and possibly the larger halos).
Reviewer #2 (Public Review):
Summary:
The study explores a new strategy of lysin-derived antimicrobial peptide-primed screening to find peptidoglycan hydrolases from bacterial proteomes. Using this strategy authors identified five peptidoglycan hydrolases from A. baumannii. They further tested their antimicrobial activities on various Gram-positive and Gram-negative pathogens.
Strengths:
Overall, the study is good and adds new members to the peptidoglycan hydrolases family. The authors also show that these lysins have bactericidal activities against both Gram-positive and Gram-negative bacteria. The crystal structure data is good, and reveals different thermostablility to the peptidoglycan hydrolases. Structural data also reveals that PhAb10 and PHAb11 form thermostable dimers and data is corroborated by generating variant protein defective in supporting intermolecular bond pairs. The mice bacterial infection shows promise for the use of these hydrolases as antimicrobial agents.
Weaknesses:
While the authors have employed various mechanisms to justify their findings, some aspects are still unclear. Only CFU has been used to test bactericidal activity. This should also be corroborated by live/dead assay. Moreover, SEM or TEM analysis would reveal the effect of these peptidoglycan hydrolases on Gram-negative /Gram-positive cell envelopes. The authors claim that these hydrolases are similar to T4 lysozyme, but they have not correlated their findings with already published findings on T4 lysozyme. T4 lysozyme has a C-terminal amphipathic helix with antimicrobial properties. Moreover, heat, denatured lysozyme also shows enhanced bactericidal activity due to the formation of hydrophobic dimeric forms, which are inserted in the membrane. Authors also observe that heat-denatured PHAb10 and PHAb11 have bactericidal activity but no enzymatic activity. These findings should be corroborated by studying the effect of these holoenzymes/ truncated peptides on bacterial cell membranes. Also, a quantitative peptidoglycan cleavage assay should be performed in addition to the halo assay. Including these details would make the work more comprehensive.