Sleep need driven oscillation of glutamate synaptic phenotype

  1. International Institute of Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
  2. Department of Neuroscience, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
  3. Department of Psychiatry, Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Amita Sehgal
    University of Pennsylvania, Howard Hughes Medical Institute, Philadelphia, United States of America
  • Senior Editor
    John Huguenard
    Stanford University School of Medicine, Stanford, United States of America

Reviewer #1 (Public Review):

Summary:

This manuscript by Vogt et al examines how the synaptic composition of AMPA and NMDA receptors changes over sleep and wake states. The authors perform whole-cell patch clamp recordings to quantify changes in silent synapse numbers across conditions of spontaneous sleep, sleep deprivation, and recovery sleep after deprivation. They also perform single nucleus RNAseq to identify transcriptional changes related to AMPA/NMDA receptor composition following spontaneous sleep and sleep deprivation. The findings of this study are consistent with a decrease in silent synapse number during wakefulness and an increase during sleep. However, these changes cannot be conclusively linked to sleep/wake states. Measurements were performed in the motor cortex, and sleep deprivation was achieved by forced locomotion, raising the possibility that recent levels of neuronal activity/induction of plasticity, rather than sleep/wake states, are responsible for the observed results.

Strengths:

This study examines an important question. Glutamatergic synaptic transmission has been a focus of studies in the sleep field, but AMPA receptor function has been the primary target of these studies. Silent synapses, which contain NMDA receptors but lack AMPA receptors, have important functional consequences for the brain. Exploring the role of sleep in regulating silent synapse numbers is important to understanding the role of sleep in brain function. The electrophysiological approach of measuring the failure rate ratio, supported by AMPA/NMDA ratio measurements, is a rigorous tool to evaluate silent synapse numbers.

The authors also perform snRNAseq to identify genes differentially expressed in the spontaneous sleep and sleep deprivation groups. This analysis reveals an intriguing pattern of upregulated genes controlled by HDAC4 and Mef2c, along with synaptic shaping component genes and genes associated with autism spectrum disorder, across cell types in the sleep deprivation group. This unbiased approach identifies candidate genes for follow-up studies.

Weaknesses:

A major weakness of this study is the experimental design. Measurements are made from the motor cortex, and sleep deprivation was achieved using forced locomotion on a treadmill. Therefore, the effects observed could be due to recent high levels of activity or plasticity induction in the motor cortex from locomotion, rather than lack of sleep per se. In support of this interpretation, other groups have failed to find a difference in AMPA/NMDA ratio in mice with different spontaneous sleep/wake histories, although sleep deprivation was not performed (Bridi et al., Neuron 2020).

The electrophysiological measurements are problematic in several ways. First, the methods lack crucial details such as inclusion/exclusion criteria for each cell based on input and series resistance, stability of input/series resistance, polysynaptic responses, etc. that make it difficult to interpret the data. The holding potential (-90mV) used for AMPA receptor current recordings is much more hyperpolarized than typically used for these measurements. The statistical analysis of these experiments is also problematic. The number of mice used is low (3/group) and more should be added to account for inter-animal variability. Comparing the raw data with the statistical tests in supplementary table 1 (FR ratio), it appears that a data point has been dropped from the analysis, but it is unclear why. In addition, a false discovery rate (FDR) correction for multiple comparisons is used to evaluate group differences following the ANOVAs. Correcting for the FDR is less stringent and is typically used when a large number of hypotheses are tested and false positives are more acceptable. In this analysis, few comparisons are made, and the standard approach of correcting for the family-wise error rate is more appropriate.

The snRNAseq data are intriguing, but a more thorough discussion of the candidate genes and pathways that are upregulated during sleep deprivation is warranted. Several genes relevant to the AMPA/NMDA ratio are mentioned, but upregulation of most of these genes would not be expected to increase the AMPA/NMDA ratio based on the literature cited. The model presented in Figure 4C is not consistent with the data (e.g. many candidate genes could alter NMDAR function without receptor insertion/removal), and it is unclear how the current study fits into the model presented in 4D.

Reviewer #2 (Public Review):

Summary:

Here Vogt et al., provide new insights into the need for sleep and the molecular and physiological response to sleep loss. The authors expand on their previously published work (Bjorness et al., 2020) and draw from recent advances in the field to propose a neuron-centric molecular model for the accumulation and resolution of sleep need and the basis of restorative sleep function. While speculative, the proposed model successfully links important observations in the field and provides a framework to stimulate further research and advances on the molecular basis of sleep function. In my review, I highlight the important advances of this current work, and the clear merits of the proposed model, and indicate areas of the model that can serve to stimulate further investigation.

Strengths:

Reviewer comment on new data in Vogt et al., 2024
Using classic slice electrophysiology, the authors conclude that wakefulness (sleep deprivation (SD)) drives a potentiation of excitatory glutamate synapses, mediated in large part by "un-silencing" of NMDAR-active synapses to AMPAR-active synapses. Using a modern single nuclear RNAseq approach the authors conclude that SD drives changes in gene expression primarily occurring in glutamatergic neurons. The two experiments combined highlight the accumulation and resolution of sleep need centered on the strength of excitatory synapses onto excitatory neurons. This view is entirely consistent with a large body of extant and emerging literature and provides important direction for future research.

Consistent with prior work, wakefulness/SD drives an LTP-type potentiation of excitatory synaptic strength on principle cortical neurons. It has been proposed that LTP associated with wake, leads to the accumulation of sleep need by increasing neuronal excitability, and by the "saturation" of LTP capacity. This saturation subsequently impairs the capacity for further ongoing learning. This new data provides a satisfying mechanism of this saturation phenomenon by introducing the concept of silent synapses. The new data show that in mice well rested, a substantial number of synapses are "silent", containing an NMDAR component but not AMPARs. Silent synapses provide a type of reservoir for learning in that activity can drive the un-silencing, increasing the number of functional synapses. SD depletes this reservoir of silent synapses to essentially zero, explaining how SD can exhaust learning capacity. Recovery sleep led to restoration of silent synapses, explaining how recovery sleep can renew learning capacity. In their prior work (Bjorness et al., 2020) this group showed that SD drives an increase in mEPSC frequency onto these same cortical neurons, but without a clear change in pre-synaptic release probability, implying a change in the number of functional synapses. This prediction is now born out in this new dataset.

The new snRNAseq dataset indicates the sleep need is primarily seen (at the transcriptional level) in excitatory neurons, consistent with a number of other studies. First, this conclusion is corroborated by an independent, contemporary snRNAseq analysis recently available as a pre-print (Ford et al., 2023 BioRxiv https://doi.org/10.1101/2023.11.28.569011). A recently published analysis on the effects of SD in drosophila imaged synapses in every brain region in a cell-type dependent manner (Weiss et al., PNAS 2024), concluding that SD drives brain wide increases in synaptic strength almost exclusively in excitatory neurons. Further, Kim et al., Nature 2022, heavily cited in this work, show that the newly described SIK3-HDAC4/5 pathway promotes sleep depth via excitatory neurons and not inhibitory neurons.

The new experiments provided in Fig1-3 are expertly conducted and presented. This reviewer has no comments of concern regarding the execution and conclusions of these experiments.

Reviewer comment on the model in Vogt et al., 2024

In the view of this reviewer the new model proposed by Vogt et al., is an important contribution. The model is not definitively supported by new data, and in this regard should be viewed as a perspective, providing mechanistic links between recent molecular advances, while still leaving areas that need to be addressed in future work. New snRNAseq analysis indicates that SD drives the expression of synaptic shaping components (SSCs) consistent with the excitatory synapse as a major target for the restorative basis of sleep function. SD-induced gene expression is also enriched for autism spectrum disorder (ASD) risk genes. As pointed out by the authors, sleep problems are commonly reported in ASD, but the emphasis has been on sleep amount. This new analysis highlights the need to understand the impact on sleep's functional output (synapses) to fully understand the role of sleep problems in ASD.

Importantly, SD-induced gene expression in excitatory neurons overlaps with genes regulated by the transcription factor MEF2C and HDAC4/5 (Figure 4). In their prior work, the authors show loss of MEF2C in excitatory neurons abolished the SD transcriptional response and the functional recovery of synapses from SD by recovery sleep. Recent advances identified HDAC4/5 as major regulators of sleep depth and duration (in excitatory neurons) downstream of the recently identified sleep-promoting kinase SIK3. In Zhou et al., and Kim et al., Nature 2022, both groups propose a model whereby "sleep-need" signals from the synapse activate SIK3, which phosphorylates HDAC4/5, driving cytoplasmic targeting, allowing for the de-repression and transcriptional activation of "sleep genes". Prior work shows that HDAC4/5 are repressors of MEF2C. Therefore, the "sleep genes" derepressed by HDAC4/5 may be the same genes activated in response to SD by MEF2C. The new model thereby extends the signaling of sleep need at synapses (through SIK3-HDAC4/5) to the functional output of synaptic recovery by expression of synaptic/sleep genes by MEF2C. The model thereby links aspects of the expression of sleep need with the resolution of sleep need by mediating sleep function: synapse renormalization.

Weaknesses:

Areas for further investigation

In the discussion section Vogt et al., explore the links between excitatory synapse strength, arguably the major target of "sleep function", and NREM slow-wave activity (SWA), the most established marker of sleep need. SIK3-HDAC4/5 have major effects on the "depth" of sleep by regulating NREM-SWA. The effects of MEF2C loss of function on NREM SWA activity are less obvious, but clearly impact the recovery of glutamatergic synapses from SD. The authors point out how adenosine signaling is well established as a mediator of SWA, but the links between adenosine and glutamatergic strength are far from clear. The mechanistic links between SIK3/HDAC4/5, adenosine signaling, and MEF2C, are far from understood. Therefore, the molecular/mechanistic links between a synaptic basis of sleep need and resolution with NREM-SWA activity require further investigation.

Additional work is also needed to understand the mechanistic links between SIK3-HDAC4/5 signaling and MEF2C activity. The authors point out that constitutively nuclear (cn) HDAC4/5 (acting as a repressor) will mimic MEF2C loss of function. This is reasonable, however, there are notable differences in the reported phenotypes of each. Notably, cnHDAC4/5 suppresses NREM amount and NREM SWA but had no effect on the NREM-SWA increase following SD (Zhou et al., Nature 2022). Loss of MEF2C in CaMKII neurons had no effect on NREM amount and suppressed the increase in NREM-SWA following SD (Bjorness et al., 2020). These instances indicate that cnHDAC4/5 and loss of MEF2C do not exactly match suggesting additional factors are relevant in these phenotypes. Likely HDAC4/5 have functionally important interactions with other transcription factors, and likewise for MEF2C, suggesting areas for future analysis.

One emerging theme may be that the SIK3-HDAC4/5 axis is a major regulator of the sleep state, perhaps stabilizing the NREM state once the transition from wakefulness occurs. MEF2C is less involved in regulating sleep per se, and more involved in executing sleep function, by promoting restorative synaptic modifications to resolve sleep need.

Finally, advances in the roles of the respective SIK3-HDAC4/5 and MEF2C pathways point towards transcription of "sleep genes", as clearly indicated in the model of Figure 4. Clearly, more work is needed to understand how the expression of such genes ultimately leads to the resolution of sleep need by functional changes at synapses. What are these sleep genes and how do they mechanistically resolve sleep need? Thus, the current work provides a mechanistic framework to stimulate further advances in understanding the molecular basis for sleep need and the restorative basis of sleep function.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation