A synthetic method to assay polycystin channel biophysics

  1. Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
  2. Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, USA
  3. Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
  4. Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Stephan Pless
    University of Copenhagen, Copenhagen, Denmark
  • Senior Editor
    Kenton Swartz
    National Institute of Neurological Disorders and Stroke, Bethesda, United States of America

Reviewer #1 (Public Review):

Summary:

The authors have developed a valuable method based on a fully cell-free system to express a channel protein and integrate it into a membrane vesicle in order to characterize it biophysically. The study presents a useful alternative to study channels that are not amenable to being studied by more traditional methods.

Strengths:

The evidence supporting the claims of the authors is solid and convincing. The method will be of interest to researchers working on ionic channels, allowing them to study a wide range of ion channel functions such as those involved in transport, interaction with lipids, or pharmacology.

Weaknesses:

The inclusion of a mechanistic interpretation of how the channel protein folds into a protomer or a tetramer to become functional in the membrane would strengthen the study.

Reviewer #2 (Public Review):

It is challenging to study the biophysical properties of organelle channels using conventional electrophysiology. The conventional reconstitution methods require multiple steps and can be contaminated by endogenous ionophores from the host cell lines after purification. To overcome this challenge, in this manuscript, Larmore et al. described a fully synthetic method to assay the functional properties of the TRPP channel family. The TRPP channels are an important organelle ion channel family that natively traffic to primary cilia and ER organelles. The authors utilized cell-free protein expression and reconstitution of the synthetic channel protein into giant unilamellar vesicles (GUV), the single channel properties can be measured using voltage-clamp electrophysiology. Using this innovative method, the authors characterized their membrane integration, orientation, and conductance, comparing the results to those of endogenous channels. The manuscript is well-written and may present broad interest to the ion channel community studying organelle ion channels. Particularly because of the challenges of patching native cilia cells, the functional characterization is highly concentrated in very few labs. This method may provide an alternative approach to investigate other channels resistant to biophysical analysis and pharmacological characterization.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation