Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMaría ZambranoCorpoGen, Bogotá, Colombia
- Senior EditorDominique Soldati-FavreUniversity of Geneva, Geneva, Switzerland
Reviewer #2 (Public review):
Summary:
This manuscript reports a comparison of microbial traits and host response traits in a laboratory model of infected granuloma using Mtb strains from different lineages. The authors report increased bacillary growth and granuloma formation, inversely associated with T cell activation that is characterized by CXCL9, granzyme B and TNF expression. They therefore infer that these T cell responses are likely to be host-protective and that the greater virulence of modern Mtb lineages may be driven by their ability to avoid triggering these responses.
Strengths:
The comparison of multiple Mtb lineages in a granuloma model that enables evaluation of the potential role of multiple host cells in Mtb control, offers a valuable experimental approach to study the biological mechanisms that underpin differential virulence of Mtb lineages that has been previously reported in clinical and epidemiological studies.
Weaknesses:
The study is rather limited to descriptive observations, and lacks experiments to test causal relationships between host and pathogen traits. Some of the presentation of the data are difficult to interpret, and some conclusions are not adequately supported by the data.
Comments on revisions:
The authors have addressed my previous comments with appropriate revisions and explanations.
Reviewer #3 (Public review):
Arbués and colleagues describe the impact of mycobacterial genetic diversity on host-infection phenotypes. The authors evaluate Mtb infection and contextualize host-responses, bacterial growth and metabolic transitioning in vitro using their previously established model of blood-derived, primary-human-cells cultured within a collagen/fibronectin matrix. They seek to demonstrate the effectiveness of the model in determining mycobacterial strain specific granuloma-dependent host-pathogen interactions.
Understanding the way mycobacterial genetic diversity impacts granuloma biology in tuberculosis is an important goal. One of this works strengths is the use of primary human cells and two constituents of pulmonary extracellular matrix to model Mtb infection. The authors and others have previously shown that Mtb infected PBMC aggregates share important characteristics with early pulmonary TB granulomas. Use of multiple genetically distinct strains of Mtb defines this work and further bolsters it potential impact. However, the study is not comprehensive as lineages 6 and 7 are not tested. Experiments are primarily descriptive, and the methodologies are conventional. Correlative relationships are the manuscripts focus and effect sizes are generally small.
The main aim of this work is to extend an in vitro granuloma model to the study of a large collection of well characterized, genetically diverse representatives of the mycobacterium tuberculosis complex (MTBC). I believe that they accomplish that aim. The work does investigate MTBC infection of aggregated PBMCs using three strains each of Mtb lineages 1-5 and H37Rv, which is not a trivial undertaking. The experimental aims are to show that MTBC genetic diversity impacts growth and dormancy of granuloma bound bacteria and, the host responses of granulomatous aggregation as well as macrophage apoptosis, lymphocyte activation and soluble mediator release within granulomas. The methodologies employed are sufficient to test most of these aims. The authors conclusions regarding their results are mostly supported by the data. The conclusion that lineage impacts growth within granulomas is likely true and the data as presented reflect such a relationship. Their conclusions regarding lineage's impact on dormancy are partially supported, as their findings demonstrate that assays for dormancy identify strain-specific metabolic changes in the bacteria consistent with a dormancy-like state but also identify replicating bacteria as being dormant. The data strongly supports the impact of mycobacterial genetic diversity on a spectrum of granulomatous responses in their model system. Those findings are a highlight of the publication. The data further supports the idea that strain diversity impacts macrophage apoptosis but a relationship of apoptosis to the granulomatous response is not effectively evaluated. The association of lymphocyte activation with reduced mycobacterial growth as an aspect of granulomas is well documented in the literature and a negative correlation between T cell activation and growth is supported by the authors results. Their data also support the conclusion that soluble mediator production by PBMCs is different based on the infecting strain of mycobacteria and that IL1b modulates aggregate phenotypes in their model.
The authors contribute some valuable insights, particularly in Figure 3. Their model is higher echelon relative to others in the field, but I don't believe that it possesses all the components necessary to replicate formation of mycobacterial granulomas in vivo. That being said, their identification of donor-dependent aggregation phenotypes by mycobacterial strain has the potential to enable future investigations of human and mycobacterial genetic components that are involved in the formation of TB granulomas.