Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJason LerchUniversity of Oxford, Oxford, United Kingdom
- Senior EditorChristian BüchelUniversity Medical Center Hamburg-Eppendorf, Hamburg, Germany
Reviewer #1 (Public review):
Summary:
This study takes a detailed approach to understanding the effect of menopausal hormone therapy (MHT) in the brain aging of females. Neuroimaging data from the UK Biobank is used to explore brain aging and shows an unexpected effect of current MHT use and poorer brain health outcomes relative to never users. There is considerable debate about the benefits of MHT and estrogens in particular for brain health, and this analysis illustrates that the effects are certainly not straightforward and require greater consideration.
Strengths:
(1) The detailed approach to obtaining important information about MHT use from primary care records. Prior studies have suggested that factors such as estrogen/progestin type, route of administration, duration, and timing of use relative to menopause onset can contribute to whether MHT benefits brain health.
(2) Consideration of type of menopause (spontaneous, or surgical) in the analysis, as well as sensitivity diagnoses to rule out the effect being driven by those with clinical conditions.
(3) The incorporation of the brain age estimate along with hippocampal volume to address brain health.
(4) The complex data are also well explained and interpretations are reasonable.
(5) Limitations of the UK Biobank data are acknowledged
Weaknesses:
(1) Lifestyle factors are listed and the authors acknowledge group differences (at least between current users and never users of MHT). I was not able to find these analyses showing these differences.
(2) The distribution of women who were not menopausal was unequal across groups, and while the authors acknowledge this, one wonders to what extent this explains the observed findings.
(3) While the interpretations are reasonable, and relevant theories (healthy cell & critical window) are mentioned, the discussion is missing a more zoomed-out perspective of the findings. While I appreciate wanting to limit speculation, the reader is left having to synthesize a lot of complex details on their own. A particularly difficult finding to reconcile is under what conditions these women benefit from MHT and when do they not (and why that may be).
Reviewer #2 (Public review):
Summary:
In this observational study, Barth et al. investigated the association between menopausal hormone therapy and brain health in middle- to older-aged women from the UK Biobank. The study evaluated detailed MHT data (never, current, or past user), duration of mHT use (age first/last used), history of hysterectomy with or without bilateral oophorectomy, APOEE4 genotype, and brain characteristics in a large, population-based sample. The researchers found that current mHT use (compared to never-users), but not past use, was associated with a modest increase in gray and white matter brain age gap (GM and WM BAG) and a decrease in hippocampal volumes. No significant association was found between the age of mHT initiation and brain measures among mHT users. Longer duration of use and older age at last MHT use post-menopause were associated with higher GM and WM BAG, larger WMH volumes, and smaller hippocampal volumes. In a sub-sample, after adjusting for multiple comparisons, no significant associations were found between detailed mHT variables (formulations, route of administration, dosage) and brain measures. The association between mHT variables and brain measures was not influenced by APOEE4 allele carrier status. Women with a history of hysterectomy with or without bilateral oophorectomy had lower GM BAG compared to those without such a history. Overall, these observational data suggest that the association between mHT use and brain health in women may vary depending on the duration of use and surgical history.
Strengths:
The study has several strengths, including a large, population-based sample of women in the UK, and comprehensive details of demographic variables such as menopausal status, history of oophorectomy/hysterectomy, genetic risk factors for Alzheimer's disease (APOE ε4 status), age at mHT initiation, age at last use, duration of mHT, and brain imaging data (hippocampus and WMH volume).
In a sub-sample, the study accessed detailed mHT prescription data (formulations, route of administration, dosage, duration), allowing the researchers to study how these variables were associated with brain health outcomes. This level of detail is generally missing in observational studies investigating the association of mHT use with brain health.
Weaknesses:
While the study has many strengths, it also has some weaknesses. As highlighted in an editorial by Kantarci & Manson (2023), women with symptoms such as subjective cognitive problems, sleep disturbances, and elevated vasomotor symptoms combined with sleep disturbances tend to seek mHT more frequently than those without these symptoms. The authors of this study have also indicated that the need of mHT use which might be associated with these symptoms may be indicators of preexisting neurological changes, potentially reflecting worse brain health scores, including higher BAG and lower hippocampal volume and/or higher WMH. However, among current users, how many of these women have these symptoms could not be reported in the study. Women with these vasomotor symptoms who are using mHT are more likely to stay longer in the healthcare system compared with those without these symptoms and no MHT use history. The authors noted that the UK Biobank lacks detailed information on menopausal symptoms and perimenopausal staging, limiting the study's ability to understand how these variables influence outcomes.
Earlier observational studies have reported conflicting results regarding the association between mHT use and the risk of dementia and brain health. Contrary to some observational studies, three randomized trials (WHI, KEEPS, ELITE) (Espeland et al 2013, Gleason et al 2015; Henderson et al 2016) demonstrated neither beneficial nor harmful effects of mHT (with varying doses and formulations) when initiated closer to menopause (<5 years). While strong efforts were made to run proper statistical analyses to investigate the association between mHT use and brain health, these results reflect mainly associations, but not causal relationships as also stated by the authors.
Furthermore, observational studies have intrinsic limitations, such as a lack of control over switching mHT doses and formulations, a lack of laboratory measures to confirm mHT use, and reliance on self-reported data, which may not always be reliable. The authors caution that these findings should not guide individual-level decisions regarding the benefits versus risks of mHT use. However, the study raises new questions that should be addressed by randomized clinical trials to investigate the varying effects of MHT on brain health and dementia risk.
Reviewer #3 (Public review):
In this study Barth et al. present results of detailed analyses of the relationships between menopausal hormone therapy (MHT), APOE ε4 genotype, and measures of anatomical brain age in women in the UK Biobank. While past studies have investigated the links between some of these variables (including works by the authors themselves), this new study adds more detailed MHT variables, surgical status, and additional brain aging measures. The UK biobank sample is large, but it is a population cohort and many of the MHT measures are self-reported (as the authors point out). However, the authors present a solid analysis of the available information which shows associations between MHT user status, length of MHT use, as well as surgical status with brain age. However, as the authors themselves state, the results do not unequivocally support the neuroprotective or adverse effect of MHT on the brain. I think this work strengthens the case for the need of better-designed longitudinal studies investigating the effect of MHT on the brain in the peri/post-menopausal stage.
Strengths:
The authors addressed the statistical analyses rigorously. For example, multiple testing corrections, outlier removal, and sensitivity analysis were performed carefully. Ample background information is provided in the introduction allowing even individuals not familiar with the field to understand the motivation behind the work. The discussion section also does a great job of addressing open questions and limitations. Very detailed results of all statistical tests are provided either in the main text or in the supplementary information.
Weaknesses:
For me, the biggest weakness was the presentation of the results. As many variables are involved and past studies have investigated several of these questions, it would have helped to better clarify the analysis and questions that are addressed by this study in particular and what sets this work apart from past studies. The information is present in the manuscript but better organization might have helped. For example, a figure depicting the key questions near the beginning of the manuscript would have been very helpful for me. The Tables also contain a lot of information but I wonder if there might be a way to capture the most relevant information more succinctly (either in Table format or in a figure) for the main text.
Another concern I had was the linear models investigating the effects of these MHT variables on the brain age gap. The authors have included "age" as one of the parameters in this analysis. I wonder if adding a quadratic age factor age2 in the model might have improved the fit since many brain phenotypes tend to show quadratic brain age effects in the 40 to 80-year age range.