Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDaria Van TyneUniversity of Pittsburgh, Pittsburgh, United States of America
- Senior EditorAlan MosesUniversity of Toronto, Toronto, Canada
Reviewer #1 (Public review):
Summary:
The study by Jena et al. addresses important questions on the fundamental mechanisms of genetic adaptation, specifically, does adaptation proceed via changes of copy number (gene duplication and amplification "GDA") or by point mutation. While this question has been worked on (for example by Tomanek and Guet) the authors add several important aspects relating to resistance against antibiotics and they clarify the ability of Lon protease to reduce duplication formation (previous work was more indirect).
A key finding Jena et al. present is that point mutations after significant competition displace GDA. A second one is that alternative GDA constantly arise and displace each other (see work on GDA-2 in Figure 3). Finally, the authors found epistasis between resistance alleles that was contingent on lon. Together this shows an intricate interplay of lon proteolysis for the evolution and maintenance of antibiotic resistance by gene duplication.
Strengths:
The study has several important strengths: (i) the work on GDA stability and competition of GDA with point mutations is a very promising area of research and the authors contribute new aspects to it, (ii) rigorous experimentation, (iii) very clearly written introduction and discussion sections. To me, the best part of the data is that deletion of lon stimulates GDA, which has not been shown with such clarity until now.
Weaknesses:
The minor weaknesses of the manuscript are a lack of clarity in parts of the results section (Point 1) and the methods (Point 2).
Reviewer #2 (Public review):
Summary:
In this strong study, the authors provide robust evidence for the role of proteostasis genes in the evolution of antimicrobial resistance, and moreover, for stabilizing the proteome in light of gene duplication events.
Strengths:
This strong study offers an important interaction between findings involving GDA, proteostasis, experimental evolution, protein evolution, and antimicrobial resistance. Overall, I found the study to be relatively well-grounded in each of these literatures, with experiments that spoke to potential concerns from each arena. For example, the literature on proteostasis and evolution is a growing one that includes organisms (even micro-organisms) of various sorts. One of my initial concerns involved whether the authors properly tested the mechanistic bases for the rule of Lon in promoting duplication events. The authors assuaged my concern with a set of assays (Figure 8).
More broadly, the study does a nice job of demonstrating the agility of molecular evolution, with responsible explanations for the findings: gene duplications are a quick-fix, but can be out-competed relative to their mutational counterparts. Without Lon protease to keep the proteome stable, the cell allows for less stable solutions to the problem of antibiotic resistance.
The study does what any bold and ambitious study should: it contains large claims and uses multiple sorts of evidence to test those claims.
Weaknesses:
While the general argument and conclusion are clear, this paper is written for a bacterial genetics audience that is familiar with the manner of bacterial experimental evolution. From the language to the visuals, the paper is written in a boutique fashion. The figures are even difficult for me - someone very familiar with proteostasis - to understand. I don't know if this is the fault of the authors or the modern culture of publishing (where figures are increasingly packed with information and hard to decipher), but I found the figures hard to follow with the captions. But let me also consider that the problem might be mine, and so I do not want to unfairly criticize the authors.
For a generalist journal, more could be done to make this study clear, and in particular, to connect to the greater community of proteostasis researchers. I think this study needs a schematic diagram that outlines exactly what was accomplished here, at the beginning. Diagrams like this are especially important for studies like this one that offer a clear and direct set of findings, but conduct many different sorts of tests to get there. I recommend developing a visual abstract that would orient the readers to the work that has been done.
Next, I will make some more specific suggestions. In general, this study is well done and rigorous, but doesn't adequately address a growing literature that examines how proteostasis machinery influences molecular evolution in bacteria.
While this paper might properly test the authors' claims about protein quality control and evolution, the paper does not engage a growing literature in this arena and is generally not very strong on the use of evolutionary theory. I recognize that this is not the aim of the paper, however, and I do not question the authors' authority on the topic. My thoughts here are less about the invocation of theory in evolution (which can be verbose and not relevant), and more about engagement with a growing literature in this very area.
The authors mention Rodrigues 2016, but there are many other studies that should be engaged when discussing the interaction between protein quality control and evolution.
A 2015 study demonstrated how proteostasis machinery can act as a barrier to the usage of novel genes: Bershtein, S., Serohijos, A. W., Bhattacharyya, S., Manhart, M., Choi, J. M., Mu, W., ... & Shakhnovich, E. I. (2015). Protein homeostasis imposes a barrier to functional integration of horizontally transferred genes in bacteria. PLoS genetics, 11(10), e1005612
A 2019 study examined how Lon deletion influenced resistance mutations in DHFR specifically: Guerrero RF, Scarpino SV, Rodrigues JV, Hartl DL, Ogbunugafor CB. The proteostasis environment shapes higher-order epistasis operating on antibiotic resistance. Genetics. 2019 Jun 1;212(2):565-75.
A 2020 study did something similar: Thompson, Samuel, et al. "Altered expression of a quality control protease in E. coli reshapes the in vivo mutational landscape of a model enzyme." Elife 9 (2020): e53476.
And there's a new review (preprint) on this very topic that speaks directly to the various ways proteostasis shapes molecular evolution:
Arenas, Carolina Diaz, Maristella Alvarez, Robert H. Wilson, Eugene I. Shakhnovich, C. Brandon Ogbunugafor, and C. Brandon Ogbunugafor. "Proteostasis is a master modulator of molecular evolution in bacteria."
I am not simply attempting to list studies that should be cited, but rather, this study needs to be better situated in the contemporary discussion on how protein quality control is shaping evolution. This study adds to this list and is a unique and important contribution. However, the findings can be better summarized within the context of the current state of the field. This should be relatively easy to implement.
Reviewer #3 (Public review):
Summary:
This paper investigates the relationship between the proteolytic stability of an antibiotic target enzyme and the evolution of antibiotic resistance via increased gene copy number. The target of the antibiotic trimethoprim is dihydrofolate reductase (DHFR). In Escherichia coli, DHFR is encoded by folA and the major proteolysis housekeeping protease is Lon (lon). In this manuscript, the authors report the results of the experimental evolution of a lon mutant strain of E. coli in response to sub-inhibitory concentrations of the antibiotic trimethoprim and then investigate the relationship between proteolytic stability of DHFR mutants and the evolution of folA gene duplication. After 25 generations of serial passaging in a fixed concentration of trimethoprim, the authors found that folA duplication events were more common during the evolution of the lon strain, than the wt strain. However, with continued passaging, some folA duplications were replaced by a single copy of folA containing a trimethoprim resistance-conferring point mutation. Interestingly, the evolution of the lon strain in the setting of increasing concentrations of trimethoprim resulted in evolved strains with different levels of DHFR expression. In particular, some strains maintained two copies of a mutant folA that encoded an unstable DHFR. In a lon+ background, this mutant folA did not express well and did not confer trimethoprim resistance. However, in the lon- background, it displayed higher expression and conferred high-level trimethoprim resistance. The authors concluded that maintenance of the gene duplication event (and the absence of Lon) compensated for the proteolytic instability of this mutant DHFR. In summary, they provide evidence that the proteolytic stability of an antibiotic target protein is an important determinant of the evolution of target gene copy number in the setting of antibiotic selection.
Strengths:
The major strength of this paper is identifying an example of antibiotic resistance evolution that illustrates the interplay between the proteolytic stability and copy number of an antibiotic target in the setting of antibiotic selection. If the weaknesses are addressed, then this paper will be of interest to microbiologists who study the evolution of antibiotic resistance.
Weaknesses:
Although the proposed mechanism is highly plausible and consistent with the data presented, the analysis of the experiments supporting the claim is incomplete and requires more rigor and reproducibility. The impact of this finding is somewhat limited given that it is a single example that occurred in a lon strain and compensatory mutations for evolved antibiotic resistance mechanisms are described. In this case, it is not clear that there is a functional difference between the evolution of copy number versus any other mechanism that meets a requirement for increased "expression demand" (e.g. promoter mutations that increase expression and protein stabilizing mutations).