Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAxel BrungerStanford University School of Medicine, Howard Hughes Medical Institute, Stanford, United States of America
- Senior EditorQiang CuiBoston University, Boston, United States of America
Reviewer #1 (Public Review):
This study is convincing because they performed time-resolved X-ray crystallography under different pH conditions using active/inactive metal ions and PpoI mutants, as with the activity measurements in solution in conventional enzymatic studies. Although the reaction mechanism is simple and may be a little predictable, the strength of this study is that they were able to validate that PpoI catalyzes DNA hydrolysis through "a single divalent cation" because time-resolved X-ray study often observes transient metal ions which are important for catalysis but are not predictable in previous studies with static structures such as enzyme-substrate analog-metal ion complexes. The discussion of this study is well supported by their data. This study visualized the catalytic process and mutational effects on catalysis, providing new insight into the catalytic mechanism of I-PpoI through a single divalent cation. The authors found that His98, a candidate of proton acceptor in the previous experiments, also affects the Mg2+ binding for catalysis without the direct interaction between His98 and the Mg2+ ion, suggesting that "Without a proper proton acceptor, the metal ion may be prone for dissociation without the reaction proceeding, and thus stable Mg2+ binding was not observed in crystallo without His98". In future, this interesting feature observed in I-PpoI should be investigated by biochemical, structural, and computational analyses using other metal-ion dependent nucleases.
Reviewer #2 (Public Review):
Summary:
Most polymerases and nucleases use two or three divalent metal ions in their catalytic functions. The family of His-Me nucleases, however, use only one divalent metal ion, along with a conserved histidine, to catalyze DNA hydrolysis. The mechanism has been studied previously but, according to the authors, it remained unclear. By use of a time resolved X-ray crystallography, this work convincingly demonstrated that only one M2+ ion is involved in the catalysis of the His-Me I-PpoI 19 nuclease, and proposed concerted functions of the metal and the histidine.
Strengths:
This work performs mechanistic studies, including the number and roles of metal ion, pH dependence, and activation mechanism, all by structural analyses, coupled with some kinetics and mutagenesis. Overall, it is a highly rigorous work. This approach was first developed in Science (2016) for a DNA polymerase, in which Yang Cao was the first author. It has subsequently been applied to just 5 to 10 enzymes by different labs, mainly to clarify two versus three metal ion mechanisms. The present study is the first one to demonstrate a single metal ion mechanism by this approach.
Furthermore, on the basis of the quantitative correlation between the fraction of metal ion binding and the formation of product, as well as the pH dependence, and the data from site-specific mutants, the authors concluded that the functions of Mg2+ and His are a concerted process. A detailed mechanism is proposed in Figure 6.
Even though there are no major surprises in the results and conclusions, the time-resolved structural approach and the overall quality of the results represent a significant step forward for the Me-His family of nucleases. In addition, since the mechanism is unique among different classes of nucleases and polymerases, the work should be of interest to readers in DNA enzymology, or even mechanistic enzymology in general.
Weaknesses:
Two relatively minor issues are raised here for consideration:
p. 4, last para, lines 1-2: "we next visualized the entire reaction process by soaking I-PpoI crystals in buffer....". This is a little over-stated. The structures being observed are not reaction intermediates. They are mixtures of substrates and products in the enzyme-bound state. The progress of the reaction is limited by the progress of the soaking of the metal ion. Crystallography has just been used as a tool to monitor the reaction (and provide structural information about the product). It would be more accurate to say that "we next monitored the reaction progress by soaking....".
p. 5, the beginning of the section. The authors on one hand emphasized the quantitative correlation between Mg ion density and the product density. On the other hand, they raised the uncertainty in the quantitation of Mg2+ density versus Na+ density, thus they repeated the study with Mn2+ which has distinct anomalous signals. This is a very good approach. However, there is still no metal ion density shown in the key Figure 2A. It will be clearer to show the progress of metal ion density in a figure (in addition to just plots), whether it is Mg or Mn.