Neuroscience: Nerve endings reveal hidden diversity in the skin

  1. Eric E Turner  Is a corresponding author
  1. Seattle Children's Research Institute, USA

Sensory neurons are the brain's portal to the external world. Four of the five traditional senses, the ‘special senses’ of vision, scent, hearing and taste, are conveyed by discrete sense organs that contain a few types of highly specialized signal transducing cells, such as rods and cones in the retina, or cochlear hair cells in the ear. However the sense of touch, which is conveyed by general somatic sensory neurons, is much less well defined. These neurons reside in discrete ganglia that lie peripheral to the brainstem and spinal cord, including the trigeminal ganglia that receive signals from the face and head, and the dorsal root ganglia that serve the trunk and limbs. Traditionally, somatic sensory neurons have been divided into three broad subtypes: nociceptors (for sensing pain), mechanoreceptors (for sensing touch), and proprioceptors (which sense body position). Nociceptors and mechanoreceptors terminate in the skin, whereas proprioceptors terminate in muscles and tendons.

It has long been recognized that nerve endings in the skin display a diverse range of forms, but prior studies have generally used histological methods in tissue sections that do not reveal the complete morphology of each neuronal axon. Now, writing in eLife, Hao Wu, John Williams and Jeremy Nathans of Johns Hopkins University report the results of experiments that involve some very modern transgenic tricks, yet evoke the studies of neuronal morphology in the early 20th century—using methods introduced by Golgi and perfected by Ramón Y Cajal—that first revealed the complex architecture of single neurons (see Figure 1). The results of the Johns Hopkins experiment are largely descriptive in nature, and we might assume that the results reported are already buried somewhere in the literature, but they are not. Thus we are reminded that our knowledge of even well-studied experimental systems is still very fragmentary.

Drawings of neurons and nerve endings made more than a century apart. The drawing on the left was made by Santiago Ramón Y Cajal in 1899 and shows Purkinje cells in the cerebellum of a pigeon. The cells were stained with potassium dichromate and silver nitrate. The trace on the right shows nerve endings in the skin of a mouse. A combination of genetic and histochemical techniques were used to record the image from which the trace is taken (Wu et al., 2012).

IMAGE: INSTITUTO SANTIAGO RAMÓN Y CAJAL

This latest work was made possible by the Cre-Lox system—a widely-used approach in which a Cre recombinase enzyme is used to remove chromosomal DNA flanked by two genetically engineered loxP recognition sequences. Wu, Williams and Nathans used this method to excise a signal sequence blocking the expression of a histochemical marker gene which had been previously engineered into the chromosomal location of a transcription factor (Brn3a) that is important in the development of the sensory nervous system. A key feature of the experiments was the use of a form of the Cre enzyme that is translocated to the nucleus only in the presence of an estrogen-like drug, tamoxifen, so the probability that the marker gene is expressed should be related to tamoxifen concentration. By trial-and-error titration of the tamoxifen dose administered to pregnant mice bearing transgenic litters, it was possible to label a small number of discrete sensory neurons.

The Johns Hopkins researchers attempt to systematically categorize, for the first time, the complex axons of many individual sensory neurons with respect to their morphology, the number and density of their endings, and also their relationship to hair follicles, where most of the fibers terminate. They acknowledge that this must be a preliminary system, because only a subset of sensory neurons is sampled. One class of axon terminal may be consistent with fibers conveying itch sensation, but most of the endings conveying pain, pleasant and unpleasant temperatures, and chemical irritants are probably not revealed by the labeling method used. One particularly interesting class of labeled neuron possesses axons with C-shaped endings that only partly encircle hair follicles, and that terminate on a consistent side of the follicles arrayed across a large skin area. This structure may be especially suited to convey the direction of movement of tactile stimuli across the skin. Recently it has become possible to correlate some well-known markers of sensory subtypes with the terminal morphology and electrophysiological properties of mechanoreceptors (Li et al., 2011), and the function of most of the mechanoreceptors identified here await further physiological studies.

It will be interesting to see to what extent these diverse patterns of nerve endings are pre-ordained by gene regulatory programs during the developmental period when the axons are growing out from the sensory ganglia, and how much is adaptive. The overall gene regulatory cascade for the early specification of pain, touch and proprioceptive somatic sensory neurons is now fairly well understood (Liu and Ma, 2011). In mice lacking the transcription factors Islet1 and Brn3a (the gene locus used to target the reporter in this study), sensory neurons remain in a generic ‘ground state’ of differentiation and express few subtype specific markers (Dykes et al., 2011). Recent work has shown that the receptor tyrosine kinase cRet (Luo et al., 2009) and the transcription factor cMaf (Wende et al., 2012) are required for the development of some classes of mechanoreceptors. However, none of these developmental mechanisms comes close to offering an explanation for the diversity of sensory arbors observed by Wu, Williams and Nathans. If a large part of the diversity observed in the present study is genetically determined, then much the regulatory program of sensory differentiation is yet unknown.

A related question is whether the pattern of arborization will be similar in regions of skin with very different sensory properties. It is well known that the size of touch receptive fields differs widely between areas that are sparsely innervated, such as the trunk skin studied by the Johns Hopkins group, and those that are densely innervated, such as the face and fingertips. In areas with finer resolution of tactile stimuli, such as the distal limbs and face, the arbors should have smaller territories and/or have more densely packed endings. Also, since the majority of neurons described here innervate hair follicles, the glabrous skin of the hands and feet must necessarily have differently structured endings and arbors.

It is remarkable that in the brachial and lumbar regions, the receptive field of a single dorsal root ganglion may encompass a continuous area of skin from the mid-back to the tips of the digits (Takahashi et al., 2003). A single dorsal root ganglion must therefore contain at least three fundamental classes of sensory neuron, with remarkable morphological and functional diversity expressed in each class. The Johns Hopkins study is only a ‘first pass’ at a systematic description of this diversity, so it is possible that a truly remarkable range of neuronal form and function will ultimately be found within a single sensory ganglion that contains just a few thousand neurons.

References

Article and author information

Author details

  1. Eric E Turner

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
    For correspondence
    eric.turner@seattlechildrens.org
    Competing interests
    The author declares that no competing interest exist

Publication history

  1. Version of Record published: December 18, 2012 (version 1)

Copyright

© 2012, Turner

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,427
    views
  • 52
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric E Turner
(2012)
Neuroscience: Nerve endings reveal hidden diversity in the skin
eLife 1:e00352.
https://doi.org/10.7554/eLife.00352

Further reading

    1. Developmental Biology
    Amandine Jarysta, Abigail LD Tadenev ... Basile Tarchini
    Research Article

    Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.