Neurophysiology: Fruit flies step out
Movement—whether by water, air or land—is central to animal life, enabling organisms to find food and mates and to escape from predators. In the early twentieth century, the physiologist T Graham Brown identified complex networks of neurons in the spinal cords of cats that coordinated walking and other rhythmic movements (Brown, 1911, 1914). However, it was only when these networks—which are also called central pattern generators—were rediscovered in the early 1960s that their importance was fully appreciated (Wilson, 1961; Ikeda and Wiersma, 1964; Mulloney and Smarandache, 2010). From this point onwards, research into the generation of rhythmic activity by these networks and the influence of sensory feedback on this activity, has continued at a rapid pace (Marder et al., 2005; Marder and Bucher, 2007; Lamb and Calabrese, 2011).
In mammals, research into central pattern generators in the spinal cord has benefited from the advances in molecular biology afforded by the sequencing of the mouse genome (Goulding, 2009). Although our knowledge of Drosophila (fruit fly) genetics is arguably even more extensive, the small size of fruit flies has traditionally made physiological studies difficult. However, this situation is starting to change, and several groups have explored locomotion (Berni et al., 2012; Heckscher et al., 2012) and its development (Crisp et al., 2012) in fruit fly maggots.
Now, writing in eLife, César Mendes of Columbia University and colleagues, working in the laboratory of Richard Mann, report the development of new technology that can be used to track and to quantify walking in adult fruit flies (Mendes et al., 2013). Until now, this had required time-consuming manual frame-by-frame video analysis, which is a difficult process to automate (Wosnitza et al., 2012). Exploiting an optical phenomenon known as frustrated total internal reflection (fTIR), Mendes and co-workers have developed an imaging method and associated analysis software that can rapidly analyze the footprints (tarsal contacts) and body position of a fly as it walks (Figure 1). As well as revealing the insect's speed and the distance covered, the software extracts key parameters such as the degree to which limb movements are coordinated, thus allowing the insect's gait to be classified. Similar technology is already available for tracking the movements of larger animals such as rats (http://www.noldus.com/animal-behavior-research/products/catwalk), but the Columbia team is the first to scale it down to fly-like dimensions.
Insects generally employ either a tripod gait—in which three legs swing forward and the other three push backward against the ground (stance)—or a tetrapod gait, in which two legs are in swing and the remaining four are in stance. In addition to these, insects display other ‘non-canonical’ gaits that are harder to classify.
Mendes et al. find that flies, unlike vertebrates, do not show abrupt transitions from one gait to another as they increase or decrease their speed: rather, they employ a mixture of gaits that changes with their walking speed: faster flies tend to spend more time in a tripod configuration, whereas slower flies spend more time in tetrapod or non-canonical configurations. These differences led Mendes et al. to suggest that flies use distinct neural programs for walking at different speeds.
However, the most interesting results in the current work concern the role of sensory feedback in modulating the output of central pattern generators. To examine this interaction, the Columbia team used genetically modified flies that either lack all leg proprioceptors—sensors that detect the length and tension of muscles and the angle of joints, which together provide information about a limb's position in space—or a specific class of stretch receptors known as chordotonal organs. Both types of mutant fly walked more slowly than wild-type flies, and showed a more uneven gait with footprints that were less precisely aligned. Nevertheless, the mutant flies maintained a typical tripod gait and near normal coordination of limb movements with respect to body segment and side. It seems therefore that proprioception is not essential for coordinated walking, but walking is less precise without it.
Being deprived of sensory feedback was more disruptive for mutant flies that walked slowly than it was for faster individuals. Indeed, in some respects, the behaviour of feedback-deprived flies resembled that of wild-type flies walking at high speed. These observations suggest that flies walking at slow–medium speeds use distinct neural programs from those walking at faster speeds, and that flies walking at fast speeds are less dependent on sensory feedback.
The results of this study complement work on other insects. In the slow-moving stick insect (Carausius), sensory feedback from legs in the stance phase appears to be required for inter-leg coordination (Büschges 2012), whereas this does not seem to be the case in the fruit-fly experiments at Columbia. To account for this apparent discrepancy, Mendes et al. speculate that when all six legs are equally impaired, flies resort to using the central pattern generator alone, which is sufficient to execute the tripod gait. Other recent studies on adult flies, in which single legs were amputated, are consistent with this speculation (Wosnitza et al., 2012).
The future therefore seems bright for dissection of the neuronal networks, and their sensory partners, that generate rhythmic movements in Drosophila. Although work on more traditional invertebrate preparations—in which neurons are readily accessible for electrophysiology (Marder et al., 2005; Marder and Bucher, 2007; Lamb and Calabrese, 2011)—will continue to guide the way for now, I expect that as their genetic and molecular armamentarium expands, flies will come to play a seminal role in neuronal network analysis.
References
-
The intrinsic factors in the act of progression in the mammalProc Roy Soc Lond B 84:308–319.https://doi.org/10.1098/rspb.1911.0077
-
On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous systemJ Physiol 48:18–46.
-
Circuits controlling vertebrate locomotion: moving in a new directionNat Rev Neurosci 10:507–518.https://doi.org/10.1038/nrn2608
Article and author information
Author details
Publication history
Copyright
© 2013, Calabrese
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 617
- views
-
- 46
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
The concept that dimeric protein complexes in synapses can sequentially replace their subunits has been a cornerstone of Francis Crick’s 1984 hypothesis, explaining how long-term memories could be maintained in the face of short protein lifetimes. However, it is unknown whether the subunits of protein complexes that mediate memory are sequentially replaced in the brain and if this process is linked to protein lifetime. We address these issues by focusing on supercomplexes assembled by the abundant postsynaptic scaffolding protein PSD95, which plays a crucial role in memory. We used single-molecule detection, super-resolution microscopy and MINFLUX to probe the molecular composition of PSD95 supercomplexes in mice carrying genetically encoded HaloTags, eGFP, and mEoS2. We found a population of PSD95-containing supercomplexes comprised of two copies of PSD95, with a dominant 12.7 nm separation. Time-stamping of PSD95 subunits in vivo revealed that each PSD95 subunit was sequentially replaced over days and weeks. Comparison of brain regions showed subunit replacement was slowest in the cortex, where PSD95 protein lifetime is longest. Our findings reveal that protein supercomplexes within the postsynaptic density can be maintained by gradual replacement of individual subunits providing a mechanism for stable maintenance of their organization. Moreover, we extend Crick’s model by suggesting that synapses with slow subunit replacement of protein supercomplexes and long-protein lifetimes are specialized for long-term memory storage and that these synapses are highly enriched in superficial layers of the cortex where long-term memories are stored.
-
- Neuroscience
Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest provide insight into the organisation of neural function, how these differentiate individuals based on their traits, and the neural basis of different types of self-generated thoughts. Although brain activity during wakeful rest is valuable for understanding important features of human cognition, its unconstrained nature makes it difficult to disentangle neural features related to personality traits from those related to the thoughts occurring at rest. Our study builds on recent perspectives from work on ongoing conscious thought that highlight the interactions between three brain networks – ventral and dorsal attention networks, as well as the default mode network. We combined measures of personality with state-of-the-art indices of ongoing thoughts at rest and brain imaging analysis and explored whether this ‘tri-partite’ view can provide a framework within which to understand the contribution of states and traits to observed patterns of neural activity at rest. To capture macro-scale relationships between different brain systems, we calculated cortical gradients to describe brain organisation in a low-dimensional space. Our analysis established that for more introverted individuals, regions of the ventral attention network were functionally more aligned to regions of the somatomotor system and the default mode network. At the same time, a pattern of detailed self-generated thought was associated with a decoupling of regions of dorsal attention from regions in the default mode network. Our study, therefore, establishes that interactions between attention systems and the default mode network are important influences on ongoing thought at rest and highlights the value of integrating contemporary perspectives on conscious experience when understanding patterns of brain activity at rest.