Experimental Evolution: A sticky solution
We typically think of single-celled microbes as being solitary creatures endowed with an innate self-sufficiency. But at some point during their evolutionary history, single-celled microbes made a transition to multicellularity that ended their autonomy and initiated a steady march towards increasing complexity. This evolutionary leap of faith occurred independently several times, and understanding what caused single-celled microbes to relinquish a life of solitude is a longstanding problem in evolutionary biology. Now, writing in eLife, John Koschwanez and Andrew Murray at Harvard University, and Kevin Foster at the University of Oxford, demonstrate that multicellularity can be selectively advantageous for microbes when sticking together solves a problem that cannot be solved by single-celled individuals (Koschwanez et al., 2013).
In this study the motivation for the budding yeast, Saccharomyces cerevisiae, to stick together is table sugar. S. cerevisiae metabolizes the common sugar, sucrose, by first converting it to glucose and fructose outside the cell in a process called hydrolysis. This reaction is performed by a protein called invertase, which is secreted by the yeast cells, and the glucose and fructose are then imported into the cells, where they are used to meet the metabolic requirements for growth. Because the sucrose is broken down in the extracellular environment, the cell that supplies the invertase is not necessarily the same cell that will import the reaction products. This doesn't matter when there are enough cells and enough sucrose—all cells will produce invertase and all cells can use the glucose and fructose produced by the collective activity of the population. However, in a low sucrose environment, it is likely that the fraction of these products that diffuse away before they can be imported is high enough to mean that the local sugar concentration available to each yeast cell is insufficient for growth.
An engineer would solve this problem in one of three ways: increase the amount of invertase that each cell makes so as to increase the amount of hydrolyzed sucrose; import the sucrose into the cell before hydrolysis; or increase the local density of cells in order to increase the local concentration of hydrolyzed sucrose. The current study and previous work by the same group (Koschwanez et al., 2011) show that these three rationally designed solutions all work. However, engineered solutions may not be accessible or beneficial during evolution, so the relevant question is: which of these routes will be favoured by adaptive evolution?
To address this question, Koschwanez, Foster and Murray performed parallel evolution experiments. Cells were introduced into a low sucrose environment and propagated for several weeks. At the end of this experiment, all cells were considerably better at growing in a low sucrose environment than they had been to start with, indicating that mutation and selection had worked efficiently to increase fitness. Moreover, nearly all of the cells now formed multicellular clumps, demonstrating that adaptive evolution had arrived at the same solution as rational engineering. The majority of cells had also increased their expression of the invertase gene, whereas none had acquired the ability to import sucrose. So, of the three solutions envisaged, adaptive evolution chose two.
To identify the genetic basis of these acquired traits, Koschwanez et al. used the awesome power of yeast genetics and next generation sequencing. They identified more than 1500 mutations in the evolved cells, of which 80 seemed to help cells grow faster in low sucrose. The group of causal mutations included changes in a gene called ACE2, which encodes a protein required for completion of cell separation, and which results in a clumpy phenotype when defective (Gresham et al., 2006). Mutation of ACE2, plus microscopic analysis of cell clumps, reveals that the clumping phenotype arises from a defect in the separation of daughter cells after division, and not as a result of cells adhering to each other. While the underlying cause of increased invertase expression requires further investigation, Koschwanez et al. also identified mutations that were responsible for beneficial traits that they had not anticipated prior to the experiment. These included mutations that increased the expression of genes responsible for the transport of glucose and fructose into cells, and mutations that reduce the tendency of cells to cease growth when nutrient availability is low.
The results of this study present a route to undifferentiated multicellularity (that is, clumps of cells that all have similar properties) that contrasts with recent results reported by Nicole King and co-workers (Alegado et al., 2012). In that study, the unicellular choanoflagellate, Salpingoeca rosetta—one of the closest living relatives of animals—was shown to form multicellular colonies in the presence of a signaling molecule produced by bacteria. As in yeast, undifferentiated multicellularity occurs as a result of incomplete cell separation. However, in S. rosetta this appears to be a physiological response, rather than one that is acquired by mutation. Nevertheless, an intriguing possibility is that S. rosetta may have evolved to form multicellular colonies in the presence of bacteria in order to make themselves more efficient predators of those bacteria. If this were the case, the force driving undifferentiated multicellularity in both S. rosetta and yeast would be an increase in the efficiency of resource usage, which may be a common theme underlying the emergence of multicellularity.
Koschwanez et al. speculate that selection for clumping of unicellular organisms may have ultimately led to multicellularity. However, it is clear that selecting for mutants that stick together is relatively easy, and can be achieved in a single mutational step. Wild budding yeast are frequently clumpy and, in many of the commonly used laboratory strains, experimenters have selected for loss of clumpiness to enable easier manipulation of cells. Indeed, during long-term evolution experiments in yeast, selection for clumpy cells can occur intentionally (Ratcliff et al., 2012) and, sometimes, unintentionally (Lang et al., 2011). However, multicellular organisms are more than a conglomerate of undifferentiated cell types, and specialization of cell types is a defining feature of multicellular organisms. The challenge now is to design experiments that address the question of how multicellular organisms with distinct cell types might have emerged from single-celled organisms.
This process could have happened along two evolutionary trajectories. First, selection for undifferentiated multicellularity may have enabled the subsequent development of specialized cell types. Second, many microbes—including budding yeast (Gimeno et al., 1992) and S. rosetta (Dayel et al., 2011)—can exist as distinct morphological types with different characteristics. Perhaps existing in a multicellular form comprised of several physiologically distinct cell types could be beneficial in some environments. In any case, employing the powerful combination of rational engineering and long-term selection used by Koschwanez et al. is likely to prove fruitful in testing these different models.
References
-
Experimental evolution of multicellularityProc Natl Acad of Sci USA 109:1595–1600.https://doi.org/10.1073/pnas.1115323109
Article and author information
Author details
Publication history
Copyright
© 2013, Gresham
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 502
- views
-
- 27
- downloads
-
- 2
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
Lineages of rod-shaped bacteria such as Escherichia coli exhibit a temporal decline in elongation rate in a manner comparable to cellular or biological aging. The effect results from the production of asymmetrical daughters, one with a lower elongation rate, by the division of a mother cell. The slower daughter compared to the faster daughter, denoted respectively as the old and new daughters, has more aggregates of damaged proteins and fewer expressed gene products. We have examined further the degree of asymmetry by measuring the density of ribosomes between old and new daughters and between their poles. We found that ribosomes were denser in the new daughter and also in the new pole of the daughters. These ribosome patterns match the ones we previously found for expressed gene products. This outcome suggests that the asymmetry is not likely to result from properties unique to the gene expressed in our previous study, but rather from a more fundamental upstream process affecting the distribution of ribosomal abundance. Because damage aggregates and ribosomes are both more abundant at the poles of E. coli cells, we suggest that competition for space between the two could explain the reduced ribosomal density in old daughters. Using published values for aggregate sizes and the relationship between ribosomal number and elongation rates, we show that the aggregate volumes could in principle displace quantitatively the amount of ribosomes needed to reduce the elongation rate of the old daughters.
-
- Evolutionary Biology
- Genetics and Genomics
Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued. However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface’s critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.