1. Biochemistry and Chemical Biology
Download icon

Cell Biology: Opening up new fronts in the fight against cholesterol

  1. Russell A DeBose-Boyd  Is a corresponding author
  2. Jay D Horton  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  • Cited 2
  • Views 535
  • Annotations
Cite this article as: eLife 2013;2:e00663 doi: 10.7554/eLife.00663


An unexpected connection between a secretory protein called PCSK9 and Sec24A, a well known protein-transport protein, could lead to the development of novel treatments for patients with high levels of low-density lipoproteins in their blood.

Main text

Since its discovery in 2003, the secretory protein PCSK9 has been the subject of growing interest because of its role in the degradation of low-density lipoprotein (LDL) receptors in the liver (Seidah et al., 2003). LDL receptors, which reside on the surface of liver cells, help to control cholesterol levels in the body by binding to low-density lipoprotein particles circulating in the blood and mediating their entry into the cells (Horton et al., 2009). Once inside the cells, the particles are released inside endosomes and are subsequently degraded in lysosomes, while the LDL receptors return to the cell surface to capture more low-density lipoprotein particles. PCSK9—which is short for proprotein convertase subtilisin-like type 9—prevents the LDL receptors from doing this job by binding to them and then diverting them to lysosomes for degradation. The physiological relevance of this reaction was first revealed by genetic analyses of humans with abnormal levels of lipids in their blood (Abifadel et al., 2003; Cohen et al., 2006), and confirmed in experiments using genetically manipulated mice (Maxwell and Breslow, 2004; Rashid et al., 2005; Lagace et al., 2006).

Gain-of-function mutations in PCSK9 lead to high levels of low-density lipoproteins in the blood (hypercholesterolemia) because they promote the degradation of LDL receptors, whereas loss-of-function mutations markedly reduce the levels of low-density lipoproteins. Since high levels of these lipoproteins are an important risk factor for atherosclerosis and associated coronary heart disease, finding ways to inhibit PCSK9 has become the focus of much research. Indeed, the results of recent clinical trials show that antibody-mediated inhibition of PCSK9 can reduce the levels of low-density lipoproteins in patients with hypercholesterolemia by as much as 65–70% (King, 2013). Now, in eLife, David Ginsburg of the University of Michigan and co-workers—including Xiao-Wei Chen as first author—report important insights into the transport of PCSK9 within cells (Chen et al., 2013).

PCSK9 is synthesized as a precursor in the endoplasmic reticulum (ER; Figure 1) and, like many other secretory proteins, it is subjected to post-translational modifications including glycosylation, phosphorylation, and tyrosine sulfation. Most studies to date have focused on PCSK9 once it has been secreted from cells. However, Chen and co-workers—who are based at Michigan, UC Berkeley, Wayne State University, the Cleveland Clinic and UCLA—have focused their attention on the secretion of PCSK9, and made the surprising discovery that decreased secretion of PCSK9 results in higher levels of LDL receptors, with a protein called Sec24A having a central role in the connection between the two.

Transport of the secretory protein PCSK9 from the endoplasmic reticulum (ER) to the Golgi.

When newly synthesized PCSK9 (shown in red) reaches the lumen of the endoplasmic reticulum (ER), it undergoes autocatalytic cleavage (1): This creates a prodomain that remains associated with the PCSK9 as it is exported from the ER and transported to the Golgi. Data from Chen et al. indicate that PCSK9 associates with a putative transmembrane receptor (shown in blue) that links it to a Sec23/Sec24A complex in the cytosol (2). This link is likely mediated by specific interactions between one or more sorting signals in the cytosolic domain of the receptor and binding sites in Sec24A. The receptor (along with PCSK9) is then incorporated into COPII-coated vesicles (not shown) for transport to the Golgi (3) and subsequent secretion. The Sar1 enzyme that triggers the formation of the vesicle, and its release from the ER membrane (thick black line), is also shown.

Proteins are transported from the ER to the Golgi by vesicles coated with coat protein complex II (COPII), which was first identified in yeast and consists of the enzyme Sar1, and complexes made of Sec proteins (notably the heterodimeric Sec23/Sec24 complex, and the heterotetrameric Sec13/Sec31). Sec24 mediates the packaging of the protein to be transported (which is called the cargo protein) into COPII-coated vesicles, and its importance is highlighted by the observation that deletion of the Sec24 gene in yeast cells results in their death. Mammals express four paralogs or versions of Sec24—Sec24A, Sec24B, Sec24C and Sec24D—and the deletion of these paralogs in mice results in phenotypes that range from a severe neural closure defect when Sec24B is deleted, to early embryonic lethality when Sec24D is deleted (Zanetti et al., 2012). It seems likely, therefore, that each paralog mediates the inclusion of specific cargo proteins into vesicles for subsequent export from the ER.

The cargo proteins transported by COPII-coated vesicles include transmembrane proteins that span the ER membrane one or more times, as well as soluble proteins that are contained entirely within the lumen of the ER. Biochemical and crystallographic studies indicate that incorporation of a particular transmembrane cargo protein into the transport vesicle is mediated by a binding site on the Sec24 protein, which is in the cytosol, and a specific signal presented by the cargo protein (Mancias and Goldberg, 2008). How soluble proteins became incorporated into transport vesicles is not completely understood. According to the ‘bulk flow’ model, all soluble proteins become incorporated into COPII vesicles by default without selection. However, incorporation of some soluble proteins into transport vesicles is mediated by their binding to transmembrane receptors that present specific sorting signals to the Sec24 proteins in the cytosol (Figure 1).

The results of Chen and co-workers indicate that the latter of these two scenarios applies to the export of PCSK9 from the ER. They find that mice deficient in Sec24A are remarkably normal in terms of survival, development and fertility. However, characterization of these mice also led to an unexpected discovery: a deficiency of Sec24A causes abnormally low levels of low-density lipoproteins in the blood (hypocholesterolemia) as a result of elevated levels of LDL receptors in the liver.

At least three lines of evidence indicate that these high levels of LDL receptors result from decreased secretion of PCSK9. First, the levels of PCSK9 in plasma of Sec24A-deficient mice are reduced compared to wild type animals. This is accompanied by increased levels of PCSK9 within liver cells and increased expression of LDL receptors on the surface of liver cells. Second, Sec24A binds to PCSK9, even though Sec24A is a cytosolic protein and PCSK9 is confined within the lumen of the ER (Figure 1). Third, overexpression of Sec24 promotes secretion of PCSK9, whereas reducing Sec24A expression by RNA interference-mediated knockdown blunts packaging of PCSK9 into COPII vesicles.

The action of Sec24A appears to be restricted to a subset of proteins that includes PCSK9. The activation of membrane-bound transcription factors called SREBPs requires their transport from the ER to the Golgi to be mediated by the ‘escort’ protein Scap (Brown and Goldstein, 2009). Chen et al. find that SREBP activation (and thus its Scap-mediated transport from the ER to the Golgi), continues normally in the livers of Sec24A deficient mice. This is consistent with the finding that Sec24C mediates the incorporation of the Scap protein into COPII vesicles (Sun et al., 2007).

Despite these observations, enthusiasm for strategies that reduce the secretion of PCSK9 by inhibiting Sec24A should be tempered until other proteins that require Sec24A for secretion are identified. The work of Chen et al. suggests that it might be better to inhibit the putative receptor that links PCSK9 in the ER to Sec24A in the cytosol (Figure 1). Identifying this receptor and elucidating how it works will be important for two reasons: it will teach us more about the export of PCSK9 and other soluble proteins from the ER in mammals, and it might lead to the development of novel therapies to reduce the levels of low-density lipoproteins in the blood and therefore help prevent atherosclerosis and heart disease.


Article and author information

Author details

  1. Russell A DeBose-Boyd

    Department of Molecular Genetics and the Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
  2. Jay D Horton

    Departments of Internal Medicine and Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.

Publication history

  1. Version of Record published: April 9, 2013 (version 1)


© 2013, DeBose-Boyd and Horton

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 535
    Page views
  • 102
  • 2

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Margaret AM Nelson et al.
    Research Article Updated

    Currently there is great interest in targeting mitochondrial oxidative phosphorylation (OXPHOS) in cancer. However, notwithstanding the targeting of mutant dehydrogenases, nearly all hopeful ‘mito-therapeutics’ cannot discriminate cancerous from non-cancerous OXPHOS and thus suffer from a limited therapeutic index. Using acute myeloid leukemia (AML) as a model, herein, we leveraged an in-house diagnostic biochemical workflow to identify ‘actionable’ bioenergetic vulnerabilities intrinsic to cancerous mitochondria. Consistent with prior reports, AML growth and proliferation was associated with a hyper-metabolic phenotype which included increases in basal and maximal respiration. However, despite having nearly 2-fold more mitochondria per cell, clonally expanding hematopoietic stem cells, leukemic blasts, as well as chemoresistant AML were all consistently hallmarked by intrinsic OXPHOS limitations. Remarkably, by performing experiments across a physiological span of ATP free energy, we provide direct evidence that leukemic mitochondria are particularly poised to consume ATP. Relevant to AML biology, acute restoration of oxidative ATP synthesis proved highly cytotoxic to leukemic blasts, suggesting that active OXPHOS repression supports aggressive disease dissemination in AML. Together, these findings argue against ATP being the primary output of leukemic mitochondria and provide proof-of-principle that restoring, rather than disrupting, OXPHOS may represent an untapped therapeutic avenue for combatting hematological malignancy and chemoresistance.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Frédéric Frottin et al.
    Research Article

    The most frequent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia is a G4C2 repeat expansion in the C9orf72 gene. This expansion gives rise to translation of aggregating dipeptide repeat (DPR) proteins, including poly-GA as the most abundant species. However, gain of toxic function effects have been attributed to either the DPRs or the pathological G4C2 RNA. Here, we analyzed in a cellular model the relative toxicity of DPRs and RNA. Cytoplasmic poly-GA aggregates, generated in the absence of G4C2 RNA, interfered with nucleocytoplasmic protein transport, but had little effect on cell viability. In contrast, nuclear poly-GA was more toxic, impairing nucleolar protein quality control and protein biosynthesis. Production of the G4C2 RNA strongly reduced viability independent of DPR translation and caused pronounced inhibition of nuclear mRNA export and protein biogenesis. Thus, while the toxic effects of G4C2 RNA predominate in the cellular model used, DPRs exert additive effects that may contribute to pathology.