Tyrosine phosphorylation of RNA Polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells

  1. Nicolas Descostes
  2. Martin Heidemann
  3. Lionel Spinelli
  4. Roland Schüller
  5. Muhammad A Maqbool
  6. Romain Fenouil
  7. Frederic Koch
  8. Charlène Innocenti
  9. Marta Gut
  10. Ivo Gut
  11. Dirk Eick
  12. Jean-Christophe Andrau  Is a corresponding author
  1. Centre d'Immunologie de Marseille Luminy, Université Aix-Marseille, France
  2. Helmholtz Center Munich, Center of Integrated Protein Science Munich (CIPSM), Germany
  3. Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, France
  4. Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR, France
  5. Max Planck Institute for Molecular Genetics, Germany
  6. Institut de Génomique Fonctionnelle, France
  7. Centre Nacional D'Anàlisi Genòmica, Spain
  8. Insitut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR, France

Abstract

In mammals, the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II consists of 52 conserved heptapeptide repeats containing the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Post-translational modifications of the CTD coordinate the transcription cycle and various steps of mRNA maturation. Here we describe Tyr1 phosphorylation (Tyr1P) as a hallmark of promoter (5' associated) Pol II in mammalian cells, in contrast to what was described in yeast. Tyr1P is predominantly found in antisense orientation at promoters but is also specifically enriched at active enhancers. Mutation of Tyr1 to phenylalanine (Y1F) prevents the formation of the hyper-phosphorylated Pol IIO form, induces degradation of Pol II to the truncated Pol IIB form and results in a lethal phenotype. Our results suggest that Tyr1P has evolved specialized and essential functions in higher eukaryotes associated with antisense promoter and enhancer transcription, and Pol II stability.

Article and author information

Author details

  1. Nicolas Descostes

    Centre d'Immunologie de Marseille Luminy, Université Aix-Marseille, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Martin Heidemann

    Helmholtz Center Munich, Center of Integrated Protein Science Munich (CIPSM), Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Lionel Spinelli

    Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseilles, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Roland Schüller

    Helmholtz Center Munich, Center of Integrated Protein Science Munich (CIPSM), Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Muhammad A Maqbool

    Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Romain Fenouil

    Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseilles, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Frederic Koch

    Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Charlène Innocenti

    Institut de Génomique Fonctionnelle, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Marta Gut

    Centre Nacional D'Anàlisi Genòmica, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Ivo Gut

    Centre Nacional D'Anàlisi Genòmica, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Dirk Eick

    Helmholtz Center Munich, Center of Integrated Protein Science Munich (CIPSM), Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Jean-Christophe Andrau

    Insitut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR, Montpellier, France
    For correspondence
    jean-christophe.andrau@igmm.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Descostes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,015
    views
  • 627
    downloads
  • 80
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas Descostes
  2. Martin Heidemann
  3. Lionel Spinelli
  4. Roland Schüller
  5. Muhammad A Maqbool
  6. Romain Fenouil
  7. Frederic Koch
  8. Charlène Innocenti
  9. Marta Gut
  10. Ivo Gut
  11. Dirk Eick
  12. Jean-Christophe Andrau
(2014)
Tyrosine phosphorylation of RNA Polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells
eLife 3:e02105.
https://doi.org/10.7554/eLife.02105

Share this article

https://doi.org/10.7554/eLife.02105

Further reading

    1. Chromosomes and Gene Expression
    Ashwin Govindan, Nicholas K Conrad
    Research Article

    O-GlcNAcylation is the reversible post-translational addition of β-N-acetylglucosamine to serine and threonine residues of nuclear and cytoplasmic proteins. It plays an important role in several cellular processes through the modification of thousands of protein substrates. O-GlcNAcylation in humans is mediated by a single essential enzyme, O-GlcNAc transferase (OGT). OGT, together with the sole O-GlcNAcase OGA, form an intricate feedback loop to maintain O-GlcNAc homeostasis in response to changes in cellular O-GlcNAc using a dynamic mechanism involving nuclear retention of its fourth intron. However, the molecular mechanism of this dynamic regulation remains unclear. Using an O-GlcNAc responsive GFP reporter cell line, we identify SFSWAP, a poorly characterized splicing factor, as a trans-acting factor regulating OGT intron detention. We show that SFSWAP is a global regulator of retained intron splicing and exon skipping that primarily acts as a negative regulator of splicing. In contrast, knockdown of SFSWAP leads to reduced inclusion of a ‘decoy exon’ present in the OGT retained intron which may mediate its role in OGT intron detention. Global analysis of decoy exon inclusion in SFSWAP and UPF1 double knockdown cells indicate altered patterns of decoy exon usage. Together, these data indicate a role for SFSWAP as a global negative regulator of pre-mRNA splicing and positive regulator of intron retention.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Artem K Velichko, Nadezhda V Petrova ... Omar L Kantidze
    Research Article

    We investigated the role of the nucleolar protein Treacle in organizing and regulating the nucleolus in human cells. Our results support Treacle’s ability to form liquid-like phase condensates through electrostatic interactions among molecules. The formation of these biomolecular condensates is crucial for segregating nucleolar fibrillar centers from the dense fibrillar component and ensuring high levels of ribosomal RNA (rRNA) gene transcription and accurate rRNA processing. Both the central and C-terminal domains of Treacle are required to form liquid-like condensates. The initiation of phase separation is attributed to the C-terminal domain. The central domain is characterized by repeated stretches of alternatively charged amino acid residues and is vital for condensate stability. Overexpression of mutant forms of Treacle that cannot form liquid-like phase condensates compromises the assembly of fibrillar centers, suppressing rRNA gene transcription and disrupting rRNA processing. These mutant forms also fail to recruit DNA topoisomerase II binding protein 1 (TOPBP1), suppressing the DNA damage response in the nucleolus.