Tyrosine phosphorylation of RNA Polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells

  1. Nicolas Descostes
  2. Martin Heidemann
  3. Lionel Spinelli
  4. Roland Schüller
  5. Muhammad A Maqbool
  6. Romain Fenouil
  7. Frederic Koch
  8. Charlène Innocenti
  9. Marta Gut
  10. Ivo Gut
  11. Dirk Eick
  12. Jean-Christophe Andrau  Is a corresponding author
  1. Centre d'Immunologie de Marseille Luminy, Université Aix-Marseille, France
  2. Helmholtz Center Munich, Center of Integrated Protein Science Munich (CIPSM), Germany
  3. Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, France
  4. Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR, France
  5. Max Planck Institute for Molecular Genetics, Germany
  6. Institut de Génomique Fonctionnelle, France
  7. Centre Nacional D'Anàlisi Genòmica, Spain
  8. Insitut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR, France

Abstract

In mammals, the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II consists of 52 conserved heptapeptide repeats containing the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Post-translational modifications of the CTD coordinate the transcription cycle and various steps of mRNA maturation. Here we describe Tyr1 phosphorylation (Tyr1P) as a hallmark of promoter (5' associated) Pol II in mammalian cells, in contrast to what was described in yeast. Tyr1P is predominantly found in antisense orientation at promoters but is also specifically enriched at active enhancers. Mutation of Tyr1 to phenylalanine (Y1F) prevents the formation of the hyper-phosphorylated Pol IIO form, induces degradation of Pol II to the truncated Pol IIB form and results in a lethal phenotype. Our results suggest that Tyr1P has evolved specialized and essential functions in higher eukaryotes associated with antisense promoter and enhancer transcription, and Pol II stability.

Article and author information

Author details

  1. Nicolas Descostes

    Centre d'Immunologie de Marseille Luminy, Université Aix-Marseille, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Martin Heidemann

    Helmholtz Center Munich, Center of Integrated Protein Science Munich (CIPSM), Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Lionel Spinelli

    Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseilles, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Roland Schüller

    Helmholtz Center Munich, Center of Integrated Protein Science Munich (CIPSM), Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Muhammad A Maqbool

    Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Romain Fenouil

    Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseilles, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Frederic Koch

    Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Charlène Innocenti

    Institut de Génomique Fonctionnelle, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Marta Gut

    Centre Nacional D'Anàlisi Genòmica, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Ivo Gut

    Centre Nacional D'Anàlisi Genòmica, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  11. Dirk Eick

    Helmholtz Center Munich, Center of Integrated Protein Science Munich (CIPSM), Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Jean-Christophe Andrau

    Insitut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR, Montpellier, France
    For correspondence
    jean-christophe.andrau@igmm.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Descostes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,960
    views
  • 613
    downloads
  • 80
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas Descostes
  2. Martin Heidemann
  3. Lionel Spinelli
  4. Roland Schüller
  5. Muhammad A Maqbool
  6. Romain Fenouil
  7. Frederic Koch
  8. Charlène Innocenti
  9. Marta Gut
  10. Ivo Gut
  11. Dirk Eick
  12. Jean-Christophe Andrau
(2014)
Tyrosine phosphorylation of RNA Polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells
eLife 3:e02105.
https://doi.org/10.7554/eLife.02105

Share this article

https://doi.org/10.7554/eLife.02105

Further reading

    1. Chromosomes and Gene Expression
    Carmina Lichauco, Eric J Foss ... Antonio Bedalov
    Research Article

    The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.

    1. Chromosomes and Gene Expression
    Carlos Moreno-Yruela, Beat Fierz
    Insight

    Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.