Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation
Abstract
Budding yeast Spc110, a member of γ-tubulin complex receptor family (γ-TuCR), recruits γ-tubulin complexes to microtubule (MT) organizing centers (MTOCs). Biochemical studies suggest that Spc110 facilitates higher-order γ-tubulin complex assembly (Kollman et al., 2010). Nevertheless the molecular basis for this activity and the regulation are unclear. Here we show that Spc110 phosphorylated by Mps1 and Cdk1 activates γ-TuSC oligomerization and MT nucleation in a cell cycle dependent manner. Interaction between the N-terminus of the γ-TuSC subunit Spc98 and Spc110 is important for this activity. Besides the conserved CM1 motif in γ-TuCRs (Sawin et al., 2004), a second motif that we named Spc110/Pcp1 motif (SPM) is also important for MT nucleation. The activating Mps1 and Cdk1 sites lie between SPM and CM1 motifs. Most organisms have both SPM-CM1 (Spc110/Pcp1/PCNT) and CM1-only (Spc72/Mto1/Cnn/CDK5RAP2/ myomegalin) types of γ-TuCRs. The two types of γ-TuCRs contain distinct but conserved C-terminal MTOC targeting domains.
Article and author information
Author details
Copyright
© 2014, Lin et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,650
- views
-
- 413
- downloads
-
- 84
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.
-
- Biochemistry and Chemical Biology
- Stem Cells and Regenerative Medicine
Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.