Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus

  1. Ignacio Izeddin
  2. Vincent Récamier
  3. Lana Bosanac
  4. Ibrahim I Cisse
  5. Lydia Boudarene
  6. Claire Dugast-Darzacq
  7. Florence Proux
  8. Olivier Bénichou
  9. Raphaël Voituriez
  10. Olivier Bensaude
  11. Maxime Dahan
  12. Xavier Darzacq  Is a corresponding author
  1. Institut de Biologie de l'École normale supérieure (IBENS) CNRS UMR 8197, France
  2. Université Pierre et Marie Curie, France
  3. Institut Curie, CNRS UMR168, France

Abstract

Gene regulation relies on transcription factors (TFs) exploring the nucleus searching their targets. So far, most studies have focused on how fast TFs diffuse, underestimating the role of nuclear architecture. We implemented a single-molecule tracking assay to determine TFs dynamics. We found that c-Myc is a global explorer of the nucleus. In contrast, the positive transcription elongation factor P-TEFb is a local explorer that oversamples its environment. Consequently, each c-Myc molecule is equally available for all nuclear sites while P-TEFb reaches its targets in a position-dependent manner. Our observations are consistent with a model in which the exploration geometry of TFs is restrained by their interactions with nuclear structures and not by exclusion. The geometry-controlled kinetics of TFs target-search illustrates the influence of nuclear architecture on gene regulation, and has strong implications on how proteins react in the nucleus and how their function can be regulated in space and time.

Article and author information

Author details

  1. Ignacio Izeddin

    Institut de Biologie de l'École normale supérieure (IBENS) CNRS UMR 8197, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Vincent Récamier

    Institut de Biologie de l'École normale supérieure (IBENS) CNRS UMR 8197, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Lana Bosanac

    Institut de Biologie de l'École normale supérieure (IBENS) CNRS UMR 8197, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Ibrahim I Cisse

    Institut de Biologie de l'École normale supérieure (IBENS) CNRS UMR 8197, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Lydia Boudarene

    Institut de Biologie de l'École normale supérieure (IBENS) CNRS UMR 8197, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Claire Dugast-Darzacq

    Institut de Biologie de l'École normale supérieure (IBENS) CNRS UMR 8197, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Florence Proux

    Institut de Biologie de l'École normale supérieure (IBENS) CNRS UMR 8197, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Olivier Bénichou

    Université Pierre et Marie Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Raphaël Voituriez

    Université Pierre et Marie Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Olivier Bensaude

    Institut de Biologie de l'École normale supérieure (IBENS) CNRS UMR 8197, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Maxime Dahan

    Institut Curie, CNRS UMR168, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Xavier Darzacq

    Institut de Biologie de l'École normale supérieure (IBENS) CNRS UMR 8197, Paris, France
    For correspondence
    darzacq@ens.fr
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Izeddin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,072
    views
  • 1,481
    downloads
  • 303
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ignacio Izeddin
  2. Vincent Récamier
  3. Lana Bosanac
  4. Ibrahim I Cisse
  5. Lydia Boudarene
  6. Claire Dugast-Darzacq
  7. Florence Proux
  8. Olivier Bénichou
  9. Raphaël Voituriez
  10. Olivier Bensaude
  11. Maxime Dahan
  12. Xavier Darzacq
(2014)
Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus
eLife 3:e02230.
https://doi.org/10.7554/eLife.02230

Share this article

https://doi.org/10.7554/eLife.02230

Further reading

    1. Structural Biology and Molecular Biophysics
    Christopher T Schafer, Raymond F Pauszek III ... David P Millar
    Research Article

    The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G-protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.